Master enterprise-level compliance frameworks, regulatory requirements, and risk management systems for institutional MEV operations
By the end of this course, you will be able to:
Understanding global MEV regulations and compliance requirements
200 minKYC, transaction monitoring, and suspicious activity reporting
180 minAutomated compliance checking and real-time monitoring
210 minSecurity incidents, regulatory violations, and crisis protocols
190 minimport asyncio
import logging
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Callable, Any
from datetime import datetime, timedelta
from enum import Enum
import json
import hashlib
import pandas as pd
from cryptography.fernet import Fernet
import smtplib
from email.mime.text import MimeText
from email.mime.multipart import MimeMultipart
import os
import re
class ComplianceStatus(Enum):
COMPLIANT = "compliant"
NON_COMPLIANT = "non_compliant"
PENDING_REVIEW = "pending_review"
UNDER_INVESTIGATION = "under_investigation"
REMEDIATED = "remediated"
class RiskLevel(Enum):
LOW = "low"
MEDIUM = "medium"
HIGH = "high"
CRITICAL = "critical"
class RegulationType(Enum):
AML = "anti_money_laundering"
KYC = "know_your_customer"
OFAC = "ofac_sanctions"
GDPR = "gdpr_data_protection"
SEC = "sec_securities"
CFTC = "cftc_commodities"
BAIR = "bail_insurance_requirements"
@dataclass
class ComplianceRule:
"""Individual compliance rule"""
rule_id: str
regulation: RegulationType
description: str
severity: RiskLevel
automation_level: str # "fully_automated", "semi_automated", "manual"
check_frequency: str # "real_time", "daily", "weekly", "monthly"
remediation_required: bool = False
requires_human_review: bool = False
@dataclass
class ComplianceViolation:
"""Represents a compliance violation"""
violation_id: str
rule_id: str
timestamp: datetime
entity_id: str
severity: RiskLevel
description: str
status: ComplianceStatus
assigned_to: Optional[str] = None
due_date: Optional[datetime] = None
resolution_notes: str = ""
automated_detection: bool = False
@property
def days_overdue(self) -> int:
if self.due_date and self.status != ComplianceStatus.REMEDIATED:
return (datetime.now() - self.due_date).days
return 0
@dataclass
class RiskAssessment:
"""Enterprise risk assessment"""
assessment_id: str
timestamp: datetime
entity_id: str
assessment_type: str
risk_score: float
risk_level: RiskLevel
key_risks: List[str]
mitigation_measures: List[str]
next_review_date: datetime
assessor: str
approved_by: Optional[str] = None
class ComplianceFramework:
"""Comprehensive compliance management system"""
def __init__(self, config: Dict):
self.config = config
self.logger = logging.getLogger(__name__)
# Database connections
self.compliance_db = None
self.transaction_db = None
self.customer_db = None
# Rule engine
self.compliance_rules = {}
self.rule_executors = {}
# Monitoring and alerting
self.alert_thresholds = {}
self.notification_channels = []
# Encryption for sensitive data
self.cipher = Fernet(config.get('encryption_key', Fernet.generate_key()))
# Reporting
self.report_templates = {}
self.scheduled_reports = []
# Audit trail
self.audit_log = []
async def initialize(self):
"""Initialize compliance framework"""
self.logger.info("Initializing compliance framework...")
# Load compliance rules
await self._load_compliance_rules()
# Initialize monitoring systems
await self._initialize_monitoring()
# Set up alert systems
await self._setup_alerting()
# Start background processes
asyncio.create_task(self._compliance_monitoring_loop())
asyncio.create_task(self._risk_assessment_loop())
asyncio.create_task(self._regulatory_reporting_loop())
self.logger.info("Compliance framework initialized")
async def _load_compliance_rules(self):
"""Load all compliance rules from database"""
# Sample compliance rules for MEV operations
rules = [
ComplianceRule(
rule_id="AML_001",
regulation=RegulationType.AML,
description="Monitor transactions above $10,000 for suspicious patterns",
severity=RiskLevel.HIGH,
automation_level="fully_automated",
check_frequency="real_time",
requires_human_review=True
),
ComplianceRule(
rule_id="KYC_002",
regulation=RegulationType.KYC,
description="Verify customer identity for accounts above $50,000",
severity=RiskLevel.HIGH,
automation_level="semi_automated",
check_frequency="real_time",
remediation_required=True
),
ComplianceRule(
rule_id="OFAC_003",
regulation=RegulationType.OFAC,
description="Screen all addresses against OFAC sanctions list",
severity=RiskLevel.CRITICAL,
automation_level="fully_automated",
check_frequency="real_time"
),
ComplianceRule(
rule_id="MEV_004",
regulation=RegulationType.SEC,
description="Ensure MEV strategies comply with securities regulations",
severity=RiskLevel.MEDIUM,
automation_level="manual",
check_frequency="daily",
requires_human_review=True
),
ComplianceRule(
rule_id="DATA_005",
regulation=RegulationType.GDPR,
description="Ensure customer data protection and privacy compliance",
severity=RiskLevel.HIGH,
automation_level="semi_automated",
check_frequency="weekly",
remediation_required=True
)
]
# Store rules
for rule in rules:
self.compliance_rules[rule.rule_id] = rule
self.logger.info(f"Loaded {len(rules)} compliance rules")
async def check_transaction_compliance(self, transaction: Dict) -> List[ComplianceViolation]:
"""Check transaction against all applicable compliance rules"""
violations = []
for rule_id, rule in self.compliance_rules.items():
try:
# Execute rule check
violation = await self._execute_compliance_rule(rule, transaction)
if violation:
violations.append(violation)
except Exception as e:
self.logger.error(f"Error executing rule {rule_id}: {e}")
return violations
async def _execute_compliance_rule(self, rule: ComplianceRule, transaction: Dict) -> Optional[ComplianceViolation]:
"""Execute individual compliance rule"""
# Get rule-specific executor
executor = self.rule_executors.get(rule.rule_id)
if executor:
return await executor(rule, transaction)
# Default rule execution logic
if rule.regulation == RegulationType.AML:
return await self._check_aml_rule(rule, transaction)
elif rule.regulation == RegulationType.KYC:
return await self._check_kyc_rule(rule, transaction)
elif rule.regulation == RegulationType.OFAC:
return await self._check_ofac_rule(rule, transaction)
elif rule.regulation == RegulationType.SEC:
return await self._check_sec_rule(rule, transaction)
return None
async def _check_aml_rule(self, rule: ComplianceRule, transaction: Dict) -> Optional[ComplianceViolation]:
"""Check Anti-Money Laundering compliance"""
amount_usd = transaction.get('amount_usd', 0)
# Large transaction threshold
if amount_usd >= 10000:
# Check for suspicious patterns
patterns = await self._analyze_transaction_patterns(transaction)
if patterns['suspicious_score'] > 0.7:
return ComplianceViolation(
violation_id=self._generate_violation_id(),
rule_id=rule.rule_id,
timestamp=datetime.now(),
entity_id=transaction.get('entity_id'),
severity=RiskLevel.HIGH,
description=f"Suspicious transaction pattern detected: {patterns['reasons']}",
status=ComplianceStatus.PENDING_REVIEW,
automated_detection=True
)
return None
async def _check_kyc_rule(self, rule: ComplianceRule, transaction: Dict) -> Optional[ComplianceViolation]:
"""Check Know Your Customer compliance"""
entity_id = transaction.get('entity_id')
# Get customer KYC status
kyc_status = await self._get_customer_kyc_status(entity_id)
if kyc_status['status'] != 'verified':
return ComplianceViolation(
violation_id=self._generate_violation_id(),
rule_id=rule.rule_id,
timestamp=datetime.now(),
entity_id=entity_id,
severity=RiskLevel.HIGH,
description=f"Unverified customer: {kyc_status['status']}",
status=ComplianceStatus.PENDING_REVIEW,
automated_detection=True
)
return None
async def _check_ofac_rule(self, rule: ComplianceRule, transaction: Dict) -> Optional[ComplianceViolation]:
"""Check OFAC sanctions compliance"""
addresses = [transaction.get('from_address'), transaction.get('to_address')]
for address in addresses:
if address and await self._check_sanctions_list(address):
return ComplianceViolation(
violation_id=self._generate_violation_id(),
rule_id=rule.rule_id,
timestamp=datetime.now(),
entity_id=transaction.get('entity_id'),
severity=RiskLevel.CRITICAL,
description=f"Sanctioned address detected: {address}",
status=ComplianceStatus.UNDER_INVESTIGATION,
automated_detection=True
)
return None
async def _check_sec_rule(self, rule: ComplianceRule, transaction: Dict) -> Optional[ComplianceViolation]:
"""Check SEC securities compliance for MEV operations"""
# This would check if MEV strategy constitutes securities trading
strategy_type = transaction.get('strategy_type')
if strategy_type in ['front_running', 'insider_mev']:
return ComplianceViolation(
violation_id=self._generate_violation_id(),
rule_id=rule.rule_id,
timestamp=datetime.now(),
entity_id=transaction.get('entity_id'),
severity=RiskLevel.MEDIUM,
description=f"Potentially non-compliant MEV strategy: {strategy_type}",
status=ComplianceStatus.PENDING_REVIEW,
requires_human_review=True
)
return None
async def _analyze_transaction_patterns(self, transaction: Dict) -> Dict:
"""Analyze transaction for suspicious patterns"""
# Sample pattern analysis logic
patterns = {
'structuring_detected': False,
'velocity_anomaly': False,
'geographic_risk': False,
'counterparty_risk': False,
'suspicious_score': 0.0,
'reasons': []
}
amount = transaction.get('amount_usd', 0)
# Structuring detection (amounts just below reporting thresholds)
if 9000 <= amount <= 9999:
patterns['structuring_detected'] = True
patterns['suspicious_score'] += 0.4
patterns['reasons'].append("Potential structuring detected")
# Velocity anomaly
entity_id = transaction.get('entity_id')
recent_transactions = await self._get_recent_transactions(entity_id, hours=24)
if len(recent_transactions) > 50: # More than 50 transactions in 24 hours
patterns['velocity_anomaly'] = True
patterns['suspicious_score'] += 0.3
patterns['reasons'].append("High transaction velocity")
# Geographic risk
if transaction.get('country') in ['High-Risk Jurisdiction']:
patterns['geographic_risk'] = True
patterns['suspicious_score'] += 0.2
patterns['reasons'].append("High-risk jurisdiction")
return patterns
async def generate_compliance_report(self, start_date: datetime, end_date: datetime) -> Dict:
"""Generate comprehensive compliance report"""
# Get violations in date range
violations = await self._get_violations_in_range(start_date, end_date)
# Calculate metrics
total_violations = len(violations)
high_severity = len([v for v in violations if v.severity == RiskLevel.HIGH])
critical_severity = len([v for v in violations if v.severity == RiskLevel.CRITICAL])
resolved_violations = len([v for v in violations if v.status == ComplianceStatus.REMEDIATED])
# Rule compliance rates
rule_compliance = {}
for rule_id, rule in self.compliance_rules.items():
rule_violations = [v for v in violations if v.rule_id == rule_id]
total_checks = await self._get_rule_check_count(rule_id, start_date, end_date)
compliance_rate = 1.0 - (len(rule_violations) / max(total_checks, 1))
rule_compliance[rule_id] = {
'compliance_rate': compliance_rate,
'total_violations': len(rule_violations),
'total_checks': total_checks
}
# Risk assessment
risk_metrics = await self._calculate_risk_metrics(start_date, end_date)
return {
'report_period': {
'start_date': start_date.isoformat(),
'end_date': end_date.isoformat()
},
'executive_summary': {
'total_violations': total_violations,
'high_severity_violations': high_severity,
'critical_violations': critical_severity,
'resolution_rate': resolved_violations / max(total_violations, 1),
'overall_compliance_score': 1.0 - (total_violations / max(sum(rule_compliance[r]['total_checks'] for r in rule_compliance), 1))
},
'violation_analysis': {
'by_severity': {
'low': len([v for v in violations if v.severity == RiskLevel.LOW]),
'medium': len([v for v in violations if v.severity == RiskLevel.MEDIUM]),
'high': high_severity,
'critical': critical_severity
},
'by_status': {
'pending_review': len([v for v in violations if v.status == ComplianceStatus.PENDING_REVIEW]),
'under_investigation': len([v for v in violations if v.status == ComplianceStatus.UNDER_INVESTIGATION]),
'remediated': resolved_violations
}
},
'rule_compliance': rule_compliance,
'risk_metrics': risk_metrics,
'recommendations': await self._generate_compliance_recommendations(violations),
'regulatory_updates': await self._check_regulatory_updates()
}
async def create_incident_response_plan(self) -> Dict:
"""Create comprehensive incident response plan"""
return {
'incident_types': {
'security_breach': {
'severity_levels': ['low', 'medium', 'high', 'critical'],
'response_time': {
'low': '24 hours',
'medium': '4 hours',
'high': '1 hour',
'critical': '15 minutes'
},
'escalation_matrix': [
'Security Team',
'Compliance Officer',
'Risk Committee',
'Board of Directors'
]
},
'regulatory_violation': {
'response_steps': [
'Immediate containment',
'Legal review',
'Regulatory notification',
'Remediation planning',
'Communication strategy'
],
'required_reporting': [
'SEC',
'CFTC',
'FinCEN',
'Foreign regulators'
]
},
'operational_failure': {
'response_time': '30 minutes',
'backup_procedures': [
'Manual operation mode',
'Alternative execution venues',
'Customer communication',
'Recovery procedures'
]
}
},
'communication_protocols': {
'internal': [
'Management team',
'Risk committee',
'Legal department',
'IT security'
],
'external': [
'Regulatory authorities',
'Customers',
'Vendors',
'Media'
]
},
'documentation_requirements': [
'Incident timeline',
'Root cause analysis',
'Impact assessment',
'Remediation actions',
'Lessons learned'
]
}
async def implement_continuous_monitoring(self) -> Dict:
"""Implement continuous compliance monitoring"""
monitoring_config = {
'real_time_alerts': {
'transaction_monitoring': {
'threshold_amount_usd': 10000,
'velocity_threshold': 50, # transactions per hour
'velocity_window': '1h',
'sanctions_screening': True,
'pep_screening': True
},
'customer_monitoring': {
'kyc_renewal_alerts': True,
'risk_score_changes': True,
'account_activity_alerts': True,
'new_high_risk_customers': True
},
'system_monitoring': {
'compliance_system_health': True,
'data_quality_alerts': True,
'rule_performance_monitoring': True,
'false_positive_rates': True
}
},
'automated_remediation': {
'high_risk_transactions': 'auto_block',
'sanctions_hits': 'immediate_escalation',
'system_failures': 'auto_failover',
'data_quality_issues': 'auto_correction'
},
'reporting_automation': {
'daily_compliance_summary': True,
'weekly_risk_report': True,
'monthly_regulatory_report': True,
'quarterly_board_report': True,
'annual_comprehensive_audit': True
},
'quality_assurance': {
'rule_validation': 'monthly',
'model_validation': 'quarterly',
'system_testing': 'weekly',
'backup_system_testing': 'monthly'
}
}
return monitoring_config
# Helper methods
async def _generate_violation_id(self) -> str:
"""Generate unique violation ID"""
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
return f"VIOL_{timestamp}_{hashlib.md5(str(datetime.now()).encode()).hexdigest()[:6]}"
async def _get_customer_kyc_status(self, entity_id: str) -> Dict:
"""Get customer KYC status (placeholder implementation)"""
# This would query actual customer database
return {
'status': 'verified', # or 'pending', 'rejected', 'expired'
'verification_date': datetime.now() - timedelta(days=30),
'next_review_date': datetime.now() + timedelta(days=335)
}
async def _check_sanctions_list(self, address: str) -> bool:
"""Check address against sanctions list (placeholder implementation)"""
# This would check against actual OFAC list
return False # Assume clean for demo
async def _get_recent_transactions(self, entity_id: str, hours: int) -> List[Dict]:
"""Get recent transactions for entity (placeholder implementation)"""
# This would query actual transaction database
return [] # Return empty list for demo
async def _get_violations_in_range(self, start_date: datetime, end_date: datetime) -> List[ComplianceViolation]:
"""Get violations in date range (placeholder implementation)"""
# This would query actual compliance database
return []
async def _get_rule_check_count(self, rule_id: str, start_date: datetime, end_date: datetime) -> int:
"""Get number of times rule was checked (placeholder implementation)"""
# This would query actual rule execution logs
return 1000 # Placeholder
async def _calculate_risk_metrics(self, start_date: datetime, end_date: datetime) -> Dict:
"""Calculate risk metrics for period (placeholder implementation)"""
return {
'average_risk_score': 2.3,
'risk_score_trend': 'decreasing',
'highest_risk_day': (datetime.now() - timedelta(days=5)).isoformat(),
'risk_distribution': {
'low': 60,
'medium': 30,
'high': 8,
'critical': 2
}
}
async def _generate_compliance_recommendations(self, violations: List[ComplianceViolation]) -> List[str]:
"""Generate compliance recommendations based on violations"""
recommendations = []
if len([v for v in violations if v.severity == RiskLevel.CRITICAL]) > 5:
recommendations.append("Implement immediate review of all critical compliance processes")
if len([v for v in violations if v.due_date and v.days_overdue > 30]) > 10:
recommendations.append("Review and improve violation remediation processes")
if any(v.requires_human_review for v in violations):
recommendations.append("Increase staffing for manual compliance reviews")
return recommendations
async def _check_regulatory_updates(self) -> List[Dict]:
"""Check for recent regulatory updates"""
return [
{
'regulation': 'SEC',
'update_type': 'Guidance',
'title': 'Digital Asset Securities Framework',
'effective_date': '2024-03-01',
'impact_assessment': 'medium'
},
{
'regulation': 'CFTC',
'update_type': 'Proposed Rule',
'title': 'MEV Regulation for Commodity Markets',
'comment_deadline': '2024-04-15',
'impact_assessment': 'high'
}
]
async def _compliance_monitoring_loop(self):
"""Background loop for compliance monitoring"""
while True:
try:
# Check for new transactions
transactions = await self._get_pending_transactions()
# Process each transaction
for transaction in transactions:
violations = await self.check_transaction_compliance(transaction)
# Handle violations
for violation in violations:
await self._handle_compliance_violation(violation)
await asyncio.sleep(1) # Check every second
except Exception as e:
self.logger.error(f"Error in compliance monitoring loop: {e}")
await asyncio.sleep(10)
async def _risk_assessment_loop(self):
"""Background loop for risk assessments"""
while True:
try:
# Perform periodic risk assessments
await self._perform_scheduled_risk_assessments()
await asyncio.sleep(3600) # Check every hour
except Exception as e:
self.logger.error(f"Error in risk assessment loop: {e}")
await asyncio.sleep(60)
async def _regulatory_reporting_loop(self):
"""Background loop for regulatory reporting"""
while True:
try:
# Check if any reports are due
await self._check_scheduled_reports()
await asyncio.sleep(3600) # Check every hour
except Exception as e:
self.logger.error(f"Error in regulatory reporting loop: {e}")
await asyncio.sleep(60)
# Placeholder methods for database operations
async def _get_pending_transactions(self) -> List[Dict]:
return []
async def _handle_compliance_violation(self, violation: ComplianceViolation):
self.logger.warning(f"Compliance violation detected: {violation.violation_id}")
async def _perform_scheduled_risk_assessments(self):
pass
async def _check_scheduled_reports(self):
pass
# Usage Example
async def main():
# Initialize compliance framework
config = {
'encryption_key': Fernet.generate_key(),
'database_url': 'postgresql://user:pass@localhost/compliance',
'alert_email': 'compliance@company.com'
}
compliance_framework = ComplianceFramework(config)
await compliance_framework.initialize()
# Generate compliance report
end_date = datetime.now()
start_date = end_date - timedelta(days=30)
report = await compliance_framework.generate_compliance_report(start_date, end_date)
print(f"Compliance Score: {report['executive_summary']['overall_compliance_score']:.2%}")
print(f"Total Violations: {report['executive_summary']['total_violations']}")
# Create incident response plan
incident_plan = await compliance_framework.create_incident_response_plan()
# Implement continuous monitoring
monitoring_config = await compliance_framework.implement_continuous_monitoring()
print("Compliance framework operational")
if __name__ == "__main__":
asyncio.run(main())