Developer Path

Custom Strategy Development

Design, implement, and optimize sophisticated MEV strategies using quantitative techniques and machine learning

Duration: 20 hours
Level: Advanced
Price: Free
Certificate: Available

Course Progress

0%

Build custom strategies

Browse Modules

Learning Objectives

By the end of this course, you will be able to:

  • Design systematic MEV strategies from first principles
  • Implement machine learning models for opportunity prediction
  • Build adaptive algorithms that learn from market feedback
  • Create multi-asset and cross-chain arbitrage systems
  • Develop risk management frameworks for custom strategies
  • Deploy and monitor strategies in production environments

Course Modules

1

Strategy Design Framework

Systematic approach to MEV strategy development

180 min
Download PDF
2

Machine Learning for MEV

Prediction models and pattern recognition

220 min
Download PDF
3

Adaptive Algorithms

Self-learning systems and parameter optimization

200 min
Download PDF
4

Multi-Asset MEV Systems

Cross-asset and cross-chain arbitrage frameworks

190 min
Download PDF
5

Production Deployment

Building robust, scalable strategy infrastructure

210 min
Download PDF
6

Strategy Monitoring & Optimization

Real-time monitoring and continuous improvement

200 min
Download PDF

🎯 MEV Strategy Design Framework

Systematic Strategy Development Process

1. Market Opportunity Identification
import numpy as np
import pandas as pd
from typing import Dict, List, Tuple, Optional
from dataclasses import dataclass
from enum import Enum

class MEVOpportunityType(Enum):
    ARBITRAGE = "arbitrage"
    LIQUIDATION = "liquidation"
    SANDWICH = "sandwich"
    FRONT_RUNNING = "front_running"
    BACK_RUNNING = "back_running"

@dataclass
class MarketOpportunity:
    opportunity_type: MEVOpportunityType
    expected_profit: float
    success_probability: float
    execution_cost: float
    time_to_expiry: float
    risk_score: float
    required_capital: float
    complexity_score: int
    
    @property
    def expected_value(self) -> float:
        """Calculate expected value considering probability of success"""
        gross_profit = self.expected_profit - self.execution_cost
        return gross_profit * self.success_probability
    
    @property
    def risk_adjusted_return(self) -> float:
        """Risk-adjusted return metric"""
        if self.risk_score <= 0:
            return float('inf')
        return self.expected_value / self.risk_score

class MEVOpportunityScanner:
    def __init__(self, market_data_source, risk_calculator):
        self.market_data = market_data_source
        self.risk_calc = risk_calculator
        self.opportunity_history = []
    
    def scan_arbitrage_opportunities(self) -> List[MarketOpportunity]:
        """Scan for arbitrage opportunities across DEXs"""
        opportunities = []
        
        # Get price feeds from multiple DEXs
        dex_prices = self.market_data.get_dex_prices()
        
        # Find price discrepancies
        for token_pair in dex_prices.keys():
            prices = dex_prices[token_pair]
            
            if len(prices) < 2:
                continue
                
            # Calculate potential arbitrage
            min_price = min(prices.values())
            max_price = max(prices.values())
            
            if max_price - min_price > self.min_profit_threshold:
                buy_dex = min(prices, key=prices.get)
                sell_dex = max(prices, key=prices.get)
                
                # Calculate expected metrics
                profit = max_price - min_price
                volume = self.estimate_optimal_volume(token_pair, min_price)
                
                opportunity = MarketOpportunity(
                    opportunity_type=MEVOpportunityType.ARBITRAGE,
                    expected_profit=profit * volume,
                    success_probability=self.estimate_arbitrage_success(token_pair),
                    execution_cost=self.estimate_gas_cost(),
                    time_to_expiry=self.estimate_opportunity_lifetime(),
                    risk_score=self.risk_calc.calculate_arbitrage_risk(token_pair),
                    required_capital=volume * min_price,
                    complexity_score=2  # Arbitrage complexity
                )
                
                opportunities.append(opportunity)
        
        return self.rank_opportunities(opportunities)
    
    def scan_liquidation_opportunities(self) -> List[MarketOpportunity]:
        """Scan for liquidation opportunities"""
        opportunities = []
        
        # Get lending protocol positions
        positions = self.market_data.get_lending_positions()
        
        for protocol, protocol_positions in positions.items():
            for position in protocol_positions:
                health_factor = position['health_factor']
                
                if health_factor < self.liquidation_threshold:
                    # Calculate liquidation opportunity
                    collateral_value = position['collateral_value']
                    debt_value = position['debt_value']
                    
                    # Liquidation reward calculation
                    liquidator_reward = collateral_value * position['liquidation_bonus']
                    gas_cost = self.estimate_liquidation_gas()
                    
                    opportunity = MarketOpportunity(
                        opportunity_type=MEVOpportunityType.LIQUIDATION,
                        expected_profit=liquidator_reward - gas_cost,
                        success_probability=self.estimate_liquidation_success(position),
                        execution_cost=gas_cost,
                        time_to_expiry=self.estimate_liquidation_window(position),
                        risk_score=self.risk_calc.calculate_liquidation_risk(position),
                        required_capital=debt_value,
                        complexity_score=3  # Higher complexity than arbitrage
                    )
                    
                    opportunities.append(opportunity)
        
        return self.rank_opportunities(opportunities)
    
    def estimate_optimal_volume(self, token_pair: str, price: float) -> float:
        """Estimate optimal trade volume to maximize profit"""
        # Consider slippage and market depth
        market_depth = self.market_data.get_market_depth(token_pair)
        
        # Find volume that maximizes (price_diff * volume - slippage_cost)
        max_volume = market_depth['total_liquidity'] * 0.1  # Use max 10% of liquidity
        
        for volume in np.linspace(0.01 * max_volume, max_volume, 100):
            slippage = self.estimate_slippage(token_pair, volume, price)
            net_profit = (self.price_difference * volume) - slippage
            
            if net_profit <= 0:
                break
                
        return volume
    
    def rank_opportunities(self, opportunities: List[MarketOpportunity]) -> List[MarketOpportunity]:
        """Rank opportunities by expected value and risk"""
        return sorted(opportunities, 
                     key=lambda x: x.risk_adjusted_return, 
                     reverse=True)

# Usage Example
scanner = MEVOpportunityScanner(market_data, risk_calculator)

arbitrage_ops = scanner.scan_arbitrage_opportunities()
liquidation_ops = scanner.scan_liquidation_opportunities()

# Get top opportunities
top_arbitrage = arbitrage_ops[:5]
top_liquidations = liquidation_ops[:5]

print(f"Found {len(arbitrage_ops)} arbitrage opportunities")
print(f"Found {len(liquidation_ops)} liquidation opportunities")

for opp in top_arbitrage[:3]:
    print(f"Arbitrage: EV=${opp.expected_value:.2f}, Risk={opp.risk_score:.2f}")

for opp in top_liquidations[:3]:
    print(f"Liquidation: EV=${opp.expected_value:.2f}, Risk={opp.risk_score:.2f}")
2. Strategy Architecture Design
from abc import ABC, abstractmethod
from typing import Dict, List, Optional, Callable
from dataclasses import dataclass
import asyncio
import logging
from enum import Enum

class StrategyState(Enum):
    INITIALIZING = "initializing"
    RUNNING = "running"
    PAUSED = "paused"
    STOPPED = "stopped"
    ERROR = "error"

class ExecutionResult(Enum):
    SUCCESS = "success"
    FAILED = "failed"
    PARTIAL = "partial"
    CANCELLED = "cancelled"

@dataclass
class StrategyMetrics:
    total_trades: int = 0
    successful_trades: int = 0
    total_profit: float = 0.0
    total_fees: float = 0.0
    max_drawdown: float = 0.0
    sharpe_ratio: float = 0.0
    win_rate: float = 0.0
    avg_trade_duration: float = 0.0
    
    def update(self, trade_result):
        """Update metrics with new trade result"""
        self.total_trades += 1
        if trade_result.success:
            self.successful_trades += 1
            self.total_profit += trade_result.profit
        self.total_fees += trade_result.fees
        self.win_rate = self.successful_trades / self.total_trades

class MEVStrategy(ABC):
    """Abstract base class for MEV strategies"""
    
    def __init__(self, config: Dict, name: str):
        self.config = config
        self.name = name
        self.state = StrategyState.INITIALIZING
        self.metrics = StrategyMetrics()
        self.logger = logging.getLogger(f"{__name__}.{name}")
        self.is_running = False
        self.stop_event = asyncio.Event()
        
        # Performance tracking
        self.trade_history = []
        self.performance_window = 100  # Track last 100 trades
        
    @abstractmethod
    async def identify_opportunities(self) -> List[MarketOpportunity]:
        """Identify trading opportunities"""
        pass
    
    @abstractmethod
    async def execute_opportunity(self, opportunity: MarketOpportunity) -> ExecutionResult:
        """Execute a trading opportunity"""
        pass
    
    @abstractmethod
    def calculate_position_size(self, opportunity: MarketOpportunity) -> float:
        """Calculate optimal position size for opportunity"""
        pass
    
    @abstractmethod
    def risk_checks(self, opportunity: MarketOpportunity, position_size: float) -> bool:
        """Perform risk validation checks"""
        pass
    
    async def run_strategy(self):
        """Main strategy execution loop"""
        self.state = StrategyState.RUNNING
        self.is_running = True
        
        try:
            while not self.stop_event.is_set():
                # Identify opportunities
                opportunities = await self.identify_opportunities()
                
                # Process each opportunity
                for opportunity in opportunities:
                    if self.stop_event.is_set():
                        break
                    
                    # Risk checks
                    position_size = self.calculate_position_size(opportunity)
                    if not self.risk_checks(opportunity, position_size):
                        self.logger.warning(f"Risk check failed for opportunity {opportunity.opportunity_type}")
                        continue
                    
                    # Execute opportunity
                    result = await self.execute_opportunity(opportunity)
                    
                    # Update metrics
                    self.metrics.update(result)
                    self.trade_history.append(result)
                    
                    # Keep only recent history
                    if len(self.trade_history) > self.performance_window:
                        self.trade_history = self.trade_history[-self.performance_window:]
                    
                    # Log result
                    self.logger.info(f"Trade result: {result.success}, Profit: ${result.profit:.2f}")
                
                # Wait before next iteration
                await asyncio.sleep(self.config.get('scan_interval', 1.0))
                
        except Exception as e:
            self.logger.error(f"Strategy error: {e}")
            self.state = StrategyState.ERROR
            raise
        finally:
            self.state = StrategyState.STOPPED
            self.is_running = False
    
    async def pause_strategy(self):
        """Pause the strategy"""
        self.state = StrategyState.PAUSED
        self.stop_event.set()
    
    async def resume_strategy(self):
        """Resume the strategy"""
        self.state = StrategyState.RUNNING
        self.stop_event.clear()
        asyncio.create_task(self.run_strategy())
    
    def get_performance_summary(self) -> Dict:
        """Get strategy performance summary"""
        recent_trades = self.trade_history[-20:] if len(self.trade_history) >= 20 else self.trade_history
        
        if recent_trades:
            profits = [t.profit for t in recent_trades if t.success]
            avg_profit = np.mean(profits) if profits else 0
            profit_std = np.std(profits) if profits else 0
            sharpe = avg_profit / profit_std if profit_std > 0 else 0
        else:
            avg_profit = 0
            sharpe = 0
        
        return {
            'strategy_name': self.name,
            'state': self.state.value,
            'total_trades': self.metrics.total_trades,
            'win_rate': self.metrics.win_rate,
            'total_profit': self.metrics.total_profit,
            'recent_avg_profit': avg_profit,
            'recent_sharpe': sharpe,
            'is_running': self.is_running
        }

# Example Implementation: Enhanced Arbitrage Strategy
class SmartArbitrageStrategy(MEVStrategy):
    def __init__(self, config: Dict):
        super().__init__(config, "SmartArbitrage")
        
        # Strategy-specific parameters
        self.min_profit_threshold = config.get('min_profit', 0.5)  # $0.50 minimum
        self.max_position_size = config.get('max_position', 10000)  # $10K max
        self.max_slippage = config.get('max_slippage', 0.005)  # 0.5% max slippage
        
        # Machine learning components
        self.price_predictor = self._initialize_predictor()
        self.risk_model = self._initialize_risk_model()
    
    def _initialize_predictor(self):
        """Initialize ML model for price prediction"""
        # This would be a trained model (e.g., LSTM, Random Forest)
        return {
            'model_type': 'lstm',
            'lookback_period': 60,  # minutes
            'features': ['price', 'volume', 'gas_price', 'block_time']
        }
    
    def _initialize_risk_model(self):
        """Initialize risk assessment model"""
        return {
            'volatility_threshold': 0.05,  # 5% volatility cap
            'correlation_limit': 0.8,     # Max correlation with other strategies
            'max_drawdown_limit': 0.15    # 15% max drawdown
        }
    
    async def identify_opportunities(self) -> List[MarketOpportunity]:
        """Enhanced opportunity identification with ML predictions"""
        opportunities = []
        
        # Get current market data
        market_data = await self._get_market_data()
        
        # Predict price movements
        price_predictions = await self._predict_price_movements(market_data)
        
        # Enhanced arbitrage scanning
        for token_pair in market_data.dex_prices.keys():
            prices = market_data.dex_prices[token_pair]
            
            # Find significant price discrepancies
            for dex1, price1 in prices.items():
                for dex2, price2 in prices.items():
                    if dex1 >= dex2:
                        continue
                    
                    price_diff = price2 - price1
                    price_diff_pct = price_diff / price1
                    
                    # Check minimum profit threshold
                    if price_diff_pct > self.min_profit_threshold / price1:
                        # Predict future price movement
                        predicted_movement = price_predictions.get(token_pair, 0)
                        
                        # Adjust opportunity based on prediction
                        adjusted_profit = price_diff
                        if predicted_movement < 0:  # Price expected to converge
                            adjusted_profit *= 0.8  # Reduce by 20%
                        
                        # Risk assessment
                        risk_score = await self._assess_arbitrage_risk(token_pair, dex1, dex2)
                        
                        opportunity = MarketOpportunity(
                            opportunity_type=MEVOpportunityType.ARBITRAGE,
                            expected_profit=adjusted_profit,
                            success_probability=self._calculate_success_probability(token_pair, risk_score),
                            execution_cost=self._estimate_execution_cost(token_pair),
                            time_to_expiry=self._estimate_opportunity_lifetime(token_pair),
                            risk_score=risk_score,
                            required_capital=min(price1, price2),
                            complexity_score=2
                        )
                        
                        opportunities.append(opportunity)
        
        # Sort by expected value
        return sorted(opportunities, key=lambda x: x.expected_value, reverse=True)
    
    async def execute_opportunity(self, opportunity: MarketOpportunity) -> ExecutionResult:
        """Execute arbitrage with smart order routing"""
        try:
            # Generate transaction bundle
            bundle = await self._create_arbitrage_bundle(opportunity)
            
            # Submit to Flashbots
            result = await self._submit_bundle(bundle)
            
            if result.success:
                return ExecutionResult.SUCCESS
            else:
                return ExecutionResult.FAILED
                
        except Exception as e:
            self.logger.error(f"Execution failed: {e}")
            return ExecutionResult.FAILED
    
    def calculate_position_size(self, opportunity: MarketOpportunity) -> float:
        """Calculate optimal position size using Kelly Criterion"""
        # Get current portfolio metrics
        portfolio_value = self._get_portfolio_value()
        current_risk = self._get_current_portfolio_risk()
        
        # Kelly Criterion calculation
        if opportunity.expected_profit > 0 and opportunity.risk_score > 0:
            kelly_fraction = (opportunity.expected_profit / opportunity.risk_score)
            
            # Apply risk management constraints
            max_size = min(
                portfolio_value * 0.1,  # Max 10% of portfolio
                opportunity.required_capital * 10,  # Max 10x required capital
                self.max_position_size
            )
            
            return min(kelly_fraction * portfolio_value, max_size)
        
        return 0
    
    def risk_checks(self, opportunity: MarketOpportunity, position_size: float) -> bool:
        """Comprehensive risk validation"""
        # Check risk score threshold
        if opportunity.risk_score > self.risk_model['max_drawdown_limit']:
            return False
        
        # Check correlation with existing positions
        correlation = self._calculate_correlation_with_existing(opportunity)
        if correlation > self.risk_model['correlation_limit']:
            return False
        
        # Check volatility
        current_volatility = self._get_market_volatility(opportunity.opportunity_type)
        if current_volatility > self.risk_model['volatility_threshold']:
            return False
        
        # Check position size limits
        if position_size > self.max_position_size:
            return False
        
        # Check gas cost vs profit ratio
        if opportunity.execution_cost > opportunity.expected_profit * 0.3:
            return False
        
        return True
    
    async def _get_market_data(self):
        """Get real-time market data"""
        # Implementation would fetch from multiple data sources
        pass
    
    async def _predict_price_movements(self, market_data):
        """Use ML model to predict price movements"""
        # Implementation would use trained model
        pass
    
    async def _assess_arbitrage_risk(self, token_pair, dex1, dex2):
        """Assess risk of specific arbitrage opportunity"""
        # Implementation would analyze various risk factors
        pass
    
    def _calculate_success_probability(self, token_pair, risk_score):
        """Calculate probability of successful execution"""
        # Base success rate for arbitrage
        base_success = 0.85
        
        # Adjust based on risk score
        risk_penalty = risk_score * 0.5
        
        return max(0.1, base_success - risk_penalty)
    
    def _estimate_execution_cost(self, token_pair):
        """Estimate total execution cost (gas + fees)"""
        base_gas = 150000  # Base gas for arbitrage
        gas_price = self._get_current_gas_price()
        
        return base_gas * gas_price * 1.2  # 20% buffer
    
    def _estimate_opportunity_lifetime(self, token_pair):
        """Estimate how long opportunity will remain"""
        # Base lifetime based on historical data
        base_lifetime = 30  # seconds
        
        # Adjust based on volatility
        volatility = self._get_market_volatility('arbitrage')
        return base_lifetime / (1 + volatility)
    
    def _get_portfolio_value(self):
        """Get current portfolio value"""
        # Implementation would calculate total portfolio value
        pass
    
    def _get_current_portfolio_risk(self):
        """Get current portfolio risk metrics"""
        # Implementation would calculate portfolio risk
        pass
    
    def _calculate_correlation_with_existing(self, opportunity):
        """Calculate correlation with existing positions"""
        # Implementation would analyze correlations
        pass
    
    def _get_market_volatility(self, opportunity_type):
        """Get current market volatility"""
        # Implementation would calculate volatility
        pass
    
    async def _create_arbitrage_bundle(self, opportunity):
        """Create Flashbots bundle for arbitrage"""
        # Implementation would create transaction bundle
        pass
    
    async def _submit_bundle(self, bundle):
        """Submit bundle to Flashbots"""
        # Implementation would submit to Flashbots
        pass
    
    def _get_current_gas_price(self):
        """Get current gas price"""
        # Implementation would get gas price
        pass

# Configuration example
strategy_config = {
    'min_profit': 1.0,          # $1 minimum profit
    'max_position': 50000,      # $50K max position
    'max_slippage': 0.003,      # 0.3% max slippage
    'scan_interval': 0.5,       # 0.5 second scan interval
    'max_drawdown': 0.10        # 10% max drawdown
}

# Initialize and run strategy
strategy = SmartArbitrageStrategy(strategy_config)
# await strategy.run_strategy()