Master enterprise-scale MEV integration including legacy system connectivity, scalable infrastructure, and organizational transformation
By the end of this course, you will be able to:
Systematic approach to enterprise MEV architecture
220 minConnecting MEV systems with existing infrastructure
240 minEnterprise data management and security frameworks
210 minimport asyncio
import logging
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Callable, Any, Union
from datetime import datetime, timedelta
from enum import Enum
import json
import os
import docker
import kubernetes
import terraform
import yaml
import pandas as pd
from kubernetes import client, config
from kafka import KafkaProducer, KafkaConsumer
from kafka.errors import KafkaError
import redis
import sqlalchemy
from sqlalchemy import create_engine, text
import pandas as pd
import numpy as np
class SystemType(Enum):
LEGACY_TRADING = "legacy_trading"
RISK_MANAGEMENT = "risk_management"
MEV_EXTRACTION = "mev_extraction"
DATA_LAKE = "data_lake"
ANALYTICS = "analytics"
MONITORING = "monitoring"
COMPLIANCE = "compliance"
class IntegrationPattern(Enum):
BATCH_PROCESSING = "batch_processing"
REAL_TIME_STREAMING = "real_time_streaming"
EVENT_DRIVEN = "event_driven"
API_GATEWAY = "api_gateway"
MESSAGE_QUEUE = "message_queue"
DATABASE_REPLICATION = "database_replication"
@dataclass
class SystemIntegration:
"""Configuration for system integration"""
integration_id: str
source_system: SystemType
target_system: SystemType
integration_pattern: IntegrationPattern
data_mapping: Dict[str, str]
transformation_rules: List[Dict]
security_level: str
latency_requirement: str # 'real_time', 'near_real_time', 'batch'
throughput_requirement: str # messages_per_second
error_handling: str # 'retry', 'dead_letter_queue', 'skip'
monitoring_enabled: bool = True
compliance_requirements: List[str] = field(default_factory=list)
@dataclass
class EnterpriseComponent:
"""Enterprise system component"""
component_id: str
component_name: str
component_type: SystemType
technology_stack: Dict[str, str]
deployment_model: str # 'on_premise', 'cloud', 'hybrid'
scaling_config: Dict[str, Any]
security_config: Dict[str, Any]
monitoring_config: Dict[str, Any]
dependencies: List[str]
compliance_status: str
sla_requirements: Dict[str, float]
@dataclass
class IntegrationFlow:
"""Data integration flow definition"""
flow_id: str
flow_name: str
source_components: List[str]
target_components: List[str]
transformations: List[Dict]
validation_rules: List[Dict]
error_handling: Dict[str, Any]
performance_metrics: Dict[str, float]
compliance_checks: List[str]
class EnterpriseMEVPlatform:
"""Comprehensive enterprise MEV integration platform"""
def __init__(self, config: Dict):
self.config = config
self.logger = logging.getLogger(__name__)
# Platform components
self.components = {}
self.integration_flows = {}
self.data_streams = {}
# Infrastructure management
self.kubernetes_client = None
self.docker_client = None
self.terraform_client = None
# Data management
self.data_lake = None
self.analytics_engine = None
self.real_time_processor = None
# Integration tools
self.api_gateway = None
self.message_queue = None
self.database_connectors = {}
# Monitoring and observability
self.monitoring_stack = None
self.alerting_system = None
self.performance_analyzer = None
# Security and compliance
self.security_manager = None
self.compliance_engine = None
self.audit_logger = None
async def initialize_platform(self):
"""Initialize the complete enterprise platform"""
self.logger.info("Initializing Enterprise MEV Platform...")
# Initialize infrastructure
await self._initialize_infrastructure()
# Set up data platform
await self._initialize_data_platform()
# Initialize integration layer
await self._initialize_integration_layer()
# Set up monitoring
await self._initialize_monitoring()
# Initialize security
await self._initialize_security()
# Start platform services
await self._start_platform_services()
self.logger.info("Enterprise MEV Platform initialized successfully")
async def _initialize_infrastructure(self):
"""Initialize cloud infrastructure"""
# Initialize Kubernetes client
try:
config.load_incluster_config() # Running inside cluster
except:
config.load_kube_config() # Running locally
self.kubernetes_client = client.ApiClient()
# Initialize Docker client
self.docker_client = docker.from_env()
# Initialize Terraform for infrastructure as code
self.terraform_client = terraform.Terraform()
# Set up networking and security groups
await self._setup_network_infrastructure()
# Initialize storage systems
await self._setup_storage_systems()
# Set up monitoring infrastructure
await self._setup_monitoring_infrastructure()
async def _initialize_data_platform(self):
"""Initialize enterprise data platform"""
# Data lake setup
self.data_lake = {
'raw_data_zone': 's3://company-data-lake/raw/',
'processed_data_zone': 's3://company-data-lake/processed/',
'analytics_zone': 's3://company-data-lake/analytics/',
'metadata_store': 'postgresql://data-lake-metadata',
'catalog_service': 'atlas',
'quality_framework': 'great_expectations'
}
# Real-time processing
self.real_time_processor = {
'stream_processing': 'apache_flink',
'message_broker': 'kafka',
'cache_layer': 'redis',
'query_engine': 'apache_presto'
}
# Analytics engine
self.analytics_engine = {
'machine_learning': 'kubeflow',
'statistical_analysis': 'r_python',
'visualization': 'superset_tableau',
'reporting': 'apache_superset'
}
async def _initialize_integration_layer(self):
"""Initialize system integration layer"""
# API Gateway
self.api_gateway = {
'gateway_type': 'kong_istio',
'authentication': 'oauth2_jwt',
'rate_limiting': 'enabled',
'load_balancing': 'round_robin',
'circuit_breaker': 'enabled',
'request_logging': 'enabled'
}
# Message Queue
self.message_queue = {
'primary': 'kafka',
'backup': 'rabbitmq',
' Topics': {
'mev_opportunities': 'high_throughput',
'trade_executions': 'reliable_delivery',
'risk_alerts': 'low_latency',
'compliance_events': 'audit_trail'
}
}
# Database connectors
self.database_connectors = {
'trading_systems': {
'connector_type': 'debezium',
'database': 'postgresql',
'cdc_enabled': True
},
'risk_systems': {
'connector_type': 'apache_nifi',
'database': 'oracle',
'batch_processing': True
},
'mev_systems': {
'connector_type': 'custom',
'database': 'mongodb',
'real_time': True
}
}
async def _initialize_monitoring(self):
"""Initialize monitoring and observability"""
self.monitoring_stack = {
'metrics': 'prometheus',
'visualization': 'grafana',
'alerting': 'alertmanager',
'log_aggregation': 'elk_stack',
'tracing': 'jaeger',
'uptime_monitoring': 'pingdom'
}
self.alerting_system = {
'channels': ['email', 'slack', 'pagerduty', 'teams'],
'escalation_policies': {
'critical': 'immediate',
'high': '5_minutes',
'medium': '15_minutes',
'low': '1_hour'
},
'runbook_integration': 'confluence'
}
async def _initialize_security(self):
"""Initialize security and compliance"""
self.security_manager = {
'authentication': 'okta_azure_ad',
'authorization': 'rbac_abac',
'encryption': 'aes256',
'key_management': 'hashicorp_vault',
'certificate_management': 'cert_manager',
'network_security': 'zero_trust'
}
self.compliance_engine = {
'data_governance': 'collibra',
'privacy_protection': 'privacy_by_design',
'audit_compliance': 'sox_gdpr',
'risk_assessment': 'fair_isaac'
}
async def add_enterprise_component(self, component: EnterpriseComponent) -> bool:
"""Add new enterprise component to platform"""
try:
# Validate component configuration
await self._validate_component(component)
# Deploy component infrastructure
await self._deploy_component(component)
# Register component in platform registry
self.components[component.component_id] = component
# Set up monitoring
await self._setup_component_monitoring(component)
# Configure security
await self._configure_component_security(component)
self.logger.info(f"Component {component.component_name} added successfully")
return True
except Exception as e:
self.logger.error(f"Failed to add component {component.component_name}: {e}")
return False
async def create_integration_flow(self, flow: IntegrationFlow) -> bool:
"""Create new data integration flow"""
try:
# Validate flow configuration
await self._validate_integration_flow(flow)
# Create data transformation pipeline
pipeline = await self._create_transformation_pipeline(flow)
# Set up error handling
await self._setup_error_handling(flow)
# Configure performance monitoring
await self._setup_performance_monitoring(flow)
# Register flow in platform
self.integration_flows[flow.flow_id] = flow
# Deploy and activate flow
await self._deploy_integration_flow(flow, pipeline)
self.logger.info(f"Integration flow {flow.flow_name} created successfully")
return True
except Exception as e:
self.logger.error(f"Failed to create integration flow {flow.flow_name}: {e}")
return False
async def _validate_component(self, component: EnterpriseComponent):
"""Validate component configuration"""
# Check required fields
required_fields = ['component_id', 'component_name', 'component_type', 'technology_stack']
for field in required_fields:
if not hasattr(component, field) or getattr(component, field) is None:
raise ValueError(f"Missing required field: {field}")
# Validate technology stack compatibility
await self._check_technology_compatibility(component)
# Check dependency availability
await self._check_dependencies(component)
async def _check_technology_compatibility(self, component: EnterpriseComponent):
"""Check technology stack compatibility with platform"""
# Define compatibility matrix
compatible_stacks = {
SystemType.MEV_EXTRACTION: {
'languages': ['python', 'go', 'rust'],
'frameworks': ['fastapi', 'django', 'flask'],
'databases': ['postgresql', 'mongodb', 'redis'],
'message_queues': ['kafka', 'rabbitmq'],
'deployment': ['kubernetes', 'docker', 'terraform']
},
SystemType.LEGACY_TRADING: {
'languages': ['java', 'c++', 'python'],
'databases': ['oracle', 'postgresql', 'sqlserver'],
'integration': ['jms', 'rest', 'soap']
},
SystemType.RISK_MANAGEMENT: {
'languages': ['python', 'r', 'sas'],
'databases': ['postgresql', 'oracle'],
'analytics': ['hadoop', 'spark', 'hive']
}
}
stack = component.technology_stack
expected_stack = compatible_stacks.get(component.component_type, {})
# Check compatibility
for category, compatible_tech in expected_stack.items():
if category in stack and stack[category] not in compatible_tech:
self.logger.warning(f"Technology {stack[category]} may not be compatible with {component.component_type}")
async def _check_dependencies(self, component: EnterpriseComponent):
"""Check if component dependencies are available"""
for dependency_id in component.dependencies:
if dependency_id not in self.components:
raise ValueError(f"Required dependency {dependency_id} not found")
# Check dependency status
dep_component = self.components[dependency_id]
if dep_component.compliance_status != 'active':
raise ValueError(f"Dependency {dependency_id} is not active")
async def _deploy_component(self, component: EnterpriseComponent):
"""Deploy component to platform infrastructure"""
# Create Kubernetes deployment
await self._create_kubernetes_deployment(component)
# Set up persistent storage
await self._setup_component_storage(component)
# Configure networking
await self._configure_component_networking(component)
# Initialize databases and caches
await self._initialize_component_databases(component)
async def _create_transformation_pipeline(self, flow: IntegrationFlow):
"""Create data transformation pipeline"""
pipeline_config = {
'source_readers': [],
'transformations': flow.transformations,
'validators': flow.validation_rules,
'writers': [],
'error_handling': flow.error_handling,
'performance_monitoring': flow.performance_metrics
}
# Add source readers
for source_id in flow.source_components:
reader_config = await self._create_source_reader(source_id)
pipeline_config['source_readers'].append(reader_config)
# Add writers
for target_id in flow.target_components:
writer_config = await self._create_target_writer(target_id)
pipeline_config['writers'].append(writer_config)
return pipeline_config
async def _create_source_reader(self, source_id: str) -> Dict:
"""Create configuration for data source reader"""
if source_id not in self.components:
raise ValueError(f"Source component {source_id} not found")
source_component = self.components[source_id]
if source_component.component_type == SystemType.LEGACY_TRADING:
return {
'type': 'database_reader',
'connection': f"jdbc://trading-db/{source_id}",
'batch_size': 1000,
'incremental_columns': ['updated_at', 'trade_id']
}
elif source_component.component_type == SystemType.MEV_EXTRACTION:
return {
'type': 'stream_reader',
'source': 'kafka',
'topic': f'{source_id}_events',
'consumer_group': 'mev_integration',
'auto_offset_reset': 'earliest'
}
else:
return {
'type': 'api_reader',
'endpoint': f"https://api.{source_id}.company.com",
'pagination': 'cursor_based',
'rate_limit': 1000
}
async def setup_legacy_integration(self, legacy_system_config: Dict) -> Dict:
"""Set up integration with legacy trading systems"""
integration_plan = {
'assessment_phase': {
'legacy_system_analysis': await self._analyze_legacy_system(legacy_system_config),
'data_mapping': await self._create_data_mapping(legacy_system_config),
'interface_analysis': await self._analyze_system_interfaces(legacy_system_config),
'risk_assessment': await self._assess_integration_risks(legacy_system_config)
},
'development_phase': {
'connector_development': await self._develop_connectors(legacy_system_config),
'data_transformation': await self._develop_transformations(legacy_system_config),
'testing_framework': await self._setup_testing_framework(legacy_system_config),
'security_implementation': await self._implement_security(legacy_system_config)
},
'deployment_phase': {
'gradual_migration': await self._plan_gradual_migration(legacy_system_config),
'parallel_operation': await self._setup_parallel_operation(legacy_system_config),
'fallback_procedures': await self._define_fallback_procedures(legacy_system_config),
'monitoring_setup': await self._setup_integration_monitoring(legacy_system_config)
},
'optimization_phase': {
'performance_tuning': await self._optimize_performance(legacy_system_config),
'reliability_improvements': await self._improve_reliability(legacy_system_config),
'cost_optimization': await self._optimize_costs(legacy_system_config),
'documentation': await self._create_integration_documentation(legacy_system_config)
}
}
return integration_plan
async def create_scalable_architecture(self) -> Dict:
"""Create scalable MEV architecture design"""
architecture = {
'presentation_layer': {
'load_balancer': {
'type': 'nginx_haproxy',
'algorithm': 'round_robin',
'health_checks': True,
'ssl_termination': True
},
'api_gateway': {
'rate_limiting': '10000_requests_per_second',
'authentication': 'oauth2_jwt',
'circuit_breaker': True,
'request_logging': True
},
'web_application': {
'framework': 'react_vue',
'state_management': 'redux_vuex',
'real_time_updates': 'websocket'
}
},
'application_layer': {
'microservices': {
'mev_extraction_service': {
'instances': 'auto_scaling',
'min_instances': 3,
'max_instances': 50,
'cpu_threshold': 70,
'memory_threshold': 80
},
'risk_management_service': {
'instances': 'auto_scaling',
'min_instances': 2,
'max_instances': 20,
'cpu_threshold': 70,
'memory_threshold': 80
},
'compliance_service': {
'instances': 'static',
'instances_count': 3,
'cpu_threshold': 50,
'memory_threshold': 70
}
},
'message_queues': {
'kafka_clusters': {
'brokers': 5,
'partitions_per_topic': 30,
'replication_factor': 3,
'retention_period': '30_days'
},
'redis_clusters': {
'nodes': 6,
'sharding': True,
'replication': 'master_slave',
'persistence': 'rdb_aof'
}
}
},
'data_layer': {
'operational_databases': {
'primary_database': {
'type': 'postgresql',
'cluster_size': 3,
'backup_strategy': 'point_in_time_recovery',
'read_replicas': 2
},
'cache_layer': {
'type': 'redis',
'cluster_nodes': 6,
'ttl_strategy': 'adaptive'
}
},
'analytical_databases': {
'data_warehouse': {
'type': 'snowflake_redshift',
'storage_tiers': 'hot_warm_cold',
'compression': True,
'partitioning': 'date_based'
},
'data_lake': {
'storage': 's3_adls',
'format': 'parquet_delta',
'partitioning': 'by_date_category'
}
}
},
'infrastructure_layer': {
'container_orchestration': {
'kubernetes': {
'clusters': 3,
'nodes_per_cluster': 20,
'auto_scaling': True,
'monitoring': 'prometheus_grafana'
}
},
'service_mesh': {
'istio': {
'traffic_management': True,
'security_policy': 'zero_trust',
'observability': True
}
},
'monitoring': {
'metrics': 'prometheus',
'logging': 'elk_stack',
'tracing': 'jaeger',
'uptime': 'pingdom_statuscake'
}
}
}
return architecture
async def implement_data_governance(self) -> Dict:
"""Implement enterprise data governance framework"""
data_governance = {
'data_classification': {
'public': {
'description': 'Publicly available data',
'handling_requirements': 'none',
'retention_period': 'indefinite'
},
'internal': {
'description': 'Internal business data',
'handling_requirements': 'access_control',
'retention_period': '7_years'
},
'confidential': {
'description': 'Sensitive business information',
'handling_requirements': 'encryption_access_logging',
'retention_period': '10_years'
},
'restricted': {
'description': 'Highly sensitive data',
'handling_requirements': 'encryption_access_logging_audit',
'retention_period': 'regulatory_dependent'
}
},
'data_quality': {
'validation_rules': [
'completeness_check',
'accuracy_verification',
'consistency_validation',
'timeliness_check'
],
'quality_metrics': [
'data_completeness_ratio',
'accuracy_score',
'consistency_index',
'freshness_score'
],
'monitoring_framework': {
'real_time_validation': True,
'batch_quality_checks': True,
'quality_dashboard': 'grafana',
'alerting_thresholds': {
'completeness': 95,
'accuracy': 99,
'consistency': 98
}
}
},
'data_lineage': {
'tracking_approach': 'automated',
'lineage_tools': 'apache_atlas',
'source_to_sink_mapping': True,
'transformation_tracking': True,
'impact_analysis': True
},
'data_privacy': {
'privacy_by_design': True,
'personal_data_identification': 'automated',
'consent_management': 'distributed',
'data_anonymization': 'on_demand',
'right_to_deletion': 'automated'
},
'data_security': {
'encryption_at_rest': 'aes256',
'encryption_in_transit': 'tls_1_3',
'access_control': 'rbac_abac',
'key_management': 'hashicorp_vault',
'audit_logging': 'comprehensive'
}
}
return data_governance
async def establish_change_management(self) -> Dict:
"""Establish organizational change management program"""
change_management = {
'assessment_phase': {
'readiness_assessment': {
'organizational_culture': 'assess_current_state',
'technology_readiness': 'evaluate_infrastructure',
'skill_gaps': 'identify_training_needs',
'resistance_factors': 'analyze_change_factors'
},
'stakeholder_analysis': {
'executive_sponsors': 'identify_champions',
'business_units': 'assess_impact',
'technical_teams': 'evaluate_readiness',
'end_users': 'understand_concerns'
}
},
'planning_phase': {
'communication_strategy': {
'messaging_framework': 'consistent_clear_compelling',
'communication_channels': ['town_halls', 'newsletters', 'intranet'],
'frequency': 'weekly_updates',
'feedback_mechanisms': 'surveys_forums'
},
'training_program': {
'technical_training': 'hands_on_workshops',
'business_training': 'role_specific_sessions',
'leadership_training': 'change_leadership',
'certification_program': 'formal_assessments'
},
'support_structure': {
'help_desk': 'dedicated_support_team',
'super_user_network': 'peer_support_model',
'champion_program': 'influencer_engagement',
'coaching': 'one_on_one_support'
}
},
'execution_phase': {
'pilot_implementation': {
'pilot_selection': 'representative_groups',
'success_criteria': 'defined_metrics',
'feedback_collection': 'continuous_input',
'iteration_process': 'agile_approach'
},
'gradual_rollout': {
'wave_planning': 'logical_sequence',
'risk_mitigation': 'rollback_procedures',
'support_scaling': 'increase_capacity',
'performance_monitoring': 'real_time_tracking'
}
},
'sustainment_phase': {
'reinforcement_mechanisms': {
'success_stories': 'share_wins',
'continuous_improvement': 'feedback_loops',
'skill_development': 'ongoing_training',
'culture_embedding': 'behavior_modification'
},
'measurement_framework': {
'adoption_metrics': 'usage_statistics',
'satisfaction_scores': 'survey_results',
'business_impact': 'kpi_improvements',
'continuous_feedback': 'regular_assessments'
}
}
}
return change_management
# Helper methods (implementations would be detailed in actual system)
async def _initialize_infrastructure(self):
pass
async def _setup_network_infrastructure(self):
pass
async def _setup_storage_systems(self):
pass
async def _setup_monitoring_infrastructure(self):
pass
async def _setup_component_monitoring(self, component: EnterpriseComponent):
pass
async def _configure_component_security(self, component: EnterpriseComponent):
pass
async def _validate_integration_flow(self, flow: IntegrationFlow):
pass
async def _setup_error_handling(self, flow: IntegrationFlow):
pass
async def _setup_performance_monitoring(self, flow: IntegrationFlow):
pass
async def _deploy_integration_flow(self, flow: IntegrationFlow, pipeline: Dict):
pass
async def _start_platform_services(self):
pass
# Legacy integration helper methods
async def _analyze_legacy_system(self, config: Dict) -> Dict:
return {'analysis': 'complete'}
async def _create_data_mapping(self, config: Dict) -> Dict:
return {'mapping': 'defined'}
async def _analyze_system_interfaces(self, config: Dict) -> Dict:
return {'interfaces': 'analyzed'}
async def _assess_integration_risks(self, config: Dict) -> Dict:
return {'risks': 'assessed'}
async def _develop_connectors(self, config: Dict) -> Dict:
return {'connectors': 'developed'}
async def _develop_transformations(self, config: Dict) -> Dict:
return {'transformations': 'developed'}
async def _setup_testing_framework(self, config: Dict) -> Dict:
return {'testing': 'setup'}
async def _implement_security(self, config: Dict) -> Dict:
return {'security': 'implemented'}
async def _plan_gradual_migration(self, config: Dict) -> Dict:
return {'migration': 'planned'}
async def _setup_parallel_operation(self, config: Dict) -> Dict:
return {'parallel': 'setup'}
async def _define_fallback_procedures(self, config: Dict) -> Dict:
return {'fallback': 'defined'}
async def _setup_integration_monitoring(self, config: Dict) -> Dict:
return {'monitoring': 'setup'}
async def _optimize_performance(self, config: Dict) -> Dict:
return {'performance': 'optimized'}
async def _improve_reliability(self, config: Dict) -> Dict:
return {'reliability': 'improved'}
async def _optimize_costs(self, config: Dict) -> Dict:
return {'costs': 'optimized'}
async def _create_integration_documentation(self, config: Dict) -> Dict:
return {'documentation': 'created'}
# Example usage
async def main():
# Initialize enterprise platform
config = {
'environment': 'production',
'cloud_provider': 'aws',
'region': 'us-east-1',
'security_level': 'high',
'compliance_requirements': ['sox', 'gdpr', 'soc2']
}
platform = EnterpriseMEVPlatform(config)
await platform.initialize_platform()
# Add enterprise components
mev_component = EnterpriseComponent(
component_id='mev_core',
component_name='MEV Core Engine',
component_type=SystemType.MEV_EXTRACTION,
technology_stack={
'language': 'python',
'framework': 'fastapi',
'database': 'postgresql',
'message_queue': 'kafka',
'deployment': 'kubernetes'
},
deployment_model='cloud',
scaling_config={'min_instances': 3, 'max_instances': 50},
security_config={'encryption': 'enabled', 'authentication': 'oauth2'},
monitoring_config={'metrics': 'enabled', 'alerts': 'enabled'},
dependencies=[],
compliance_status='active',
sla_requirements={'uptime': 0.999, 'latency': 0.1}
)
success = await platform.add_enterprise_component(mev_component)
print(f"Component added: {success}")
# Create integration flow
integration_flow = IntegrationFlow(
flow_id='mev_to_risk',
flow_name='MEV to Risk Data Flow',
source_components=['mev_core'],
target_components=['risk_management'],
transformations=[
{'type': 'format_conversion', 'source': 'json', 'target': 'avro'},
{'type': 'enrichment', 'fields': ['risk_score', 'confidence']}
],
validation_rules=[
{'type': 'schema_validation', 'required_fields': ['timestamp', 'profit']},
{'type': 'data_quality', 'thresholds': {'completeness': 0.95}}
],
error_handling={'strategy': 'dead_letter_queue', 'retry_attempts': 3},
performance_metrics={'latency_target': 100, 'throughput_target': 1000},
compliance_checks=['data_classification', 'audit_trail']
)
success = await platform.create_integration_flow(integration_flow)
print(f"Integration flow created: {success}")
# Generate integration plans
legacy_config = {
'system_type': 'trading_platform',
'technology_stack': 'java_oracle',
'data_volume': 'high',
'integration_complexity': 'medium'
}
integration_plan = await platform.setup_legacy_integration(legacy_config)
print(f"Legacy integration plan created")
# Get architecture design
architecture = await platform.create_scalable_architecture()
print(f"Scalable architecture designed")
# Get data governance framework
data_governance = await platform.implement_data_governance()
print(f"Data governance implemented")
# Get change management program
change_program = await platform.establish_change_management()
print(f"Change management program established")
if __name__ == "__main__":
asyncio.run(main())