Module 2: Blockchain Transaction Ordering

Duration: 60 minutes | **Level:** Beginner | **Author:** Obelisk Core

Learning Objectives

By the end of this module, you will:

- Understand how transactions are processed and ordered in blockchain blocks
- Learn about mempool dynamics and transaction prioritization
- Explore block building and validation processes
- Understand the technical mechanisms behind MEV opportunities

Transaction Lifecycle Overview

From Submission to Confirmation

User submits transaction \rightarrow Enters Mempool \rightarrow Miner/Validator selects \rightarrow Included in Block \rightarrow Confirmed

Transaction Components

- 1. Nonce: Unique identifier for transaction ordering
- 2. Gas Price: Fee per unit of computation
- 3. Gas Limit: Maximum gas consumption allowed
- 4. To Address: Destination contract or account
- 5. Value: Amount of native token to transfer
- 6. **Data:** Function call parameters or message
- 7. **Signature:** Cryptographic proof of ownership

The Mempool

What is the Mempool?

Definition: A waiting area for pending transactions before they're included in blocks.

Ethereum Mempool Characteristics:

- Public by default: All transactions visible before inclusion
- Gas price ordering: Higher gas transactions prioritized
- **Competitive environment:** Multiple transactions competing for block space
- Time-sensitive: Transaction ordering affects MEV opportunities

Mempool Segments

1. High Priority Pool

• Gas Price: 50+ gwei

Typical Size: 100-500 transactions

• Inclusion Time: 0-2 blocks (0-30 seconds)

2. Medium Priority Pool

· Gas Price: 20-50 gwei

Typical Size: 200-1000 transactions

Inclusion Time: 2-10 blocks (30 seconds - 2.5 minutes)

3. Low Priority Pool

Gas Price: 10-20 gwei

• Typical Size: 500-2000 transactions

• Inclusion Time: 10-50 blocks (2.5-12.5 minutes)

4. Dropped Transactions

· Gas Price: <10 gwei

• May never be included

• Eventually dropped from mempool

Block Building Process

Ethereum Block Structure

```
Block Header
├─ Parent Hash
├─ State Root
├─ Receipts Root
├─ Logs Bloom
├─ Difficulty
 — Number
├─ Gas Limit
 — Gas Used
├─ Timestamp
├─ Extra Data
└─ Mix Hash / Nonce
Transactions
── Transaction 1 (Gas: 21,000)
├─ Transaction 2 (Gas: 45,000)
├── Transaction 3 (Gas: 156,000)
```

Block Constraints

- Gas Limit: Maximum total gas per block (currently ~15-30 million)
- Block Time: ~12-15 seconds on Ethereum
- Transaction Ordering: Gas price descending order (by default)

Typical Block Composition

- Simple transfers: 80-90% of transactions
- Smart contract calls: 10-15% of transactions
- Complex DeFi transactions: 1-5% of transactions
- MEV bundles: <1% but highest gas prices

Transaction Ordering Strategies

1. Gas Price Ordering (Default)

Method: Sort by gas price (highest first)

Rationale: Maximize validator/miner revenue **Limitations:** Predictable, enables front-running

2. FIFO (First-In-First-Out)

Method: Process based on arrival time **Used by:** Some alternative chains

Challenges: Requires precise timing synchronization

3. Custom Ordering

Method: Validator chooses specific order **Benefits:** Can implement MEV protection **Examples:** Random ordering, gas price caps

Transaction Prioritization Factors

Primary Factors

1. Gas Price: Highest impact on ordering

2. Gas Limit: Affects block gas consumption

3. Nonce: Prevents transaction replay

4. Timestamp: Transaction validity window

Secondary Factors

1. Transaction Size: Larger transactions slower to propagate

2. **Network Congestion:** During high activity periods

3. Validator Preferences: Some prefer specific transaction types

4. MEV Optimization: Validators may prioritize certain patterns

Transaction Propagation

P2P Network Structure

```
Transaction Submitted

↓
Local Node

↓
Peer-to-Peer Network

↓
Global Mempool

↓
Mining/Validation Pool

↓
Block Inclusion
```

Propagation Speed Factors

- 1. **Network Topology:** Geographic distribution of nodes
- 2. Bandwidth: Node connection quality
- 3. **Node Load:** Computational resources available
- 4. Geographic Location: Distance from transaction source

MEV Impact

- Fastest propagation: Better chance of inclusion
- Coordinated bundles: Submit simultaneously to multiple validators
- Private mempools: Avoid public propagation (e.g., Flashbots)

Gas Auction Mechanics

Gas Price Dynamics

Normal Conditions:

- Base fee: 20 gwei

- Priority fee: 2 gwei

- Total: 22 gwei

High Demand:

- Base fee: 50 gwei

- Priority fee: 15 gwei

- Total: 65 gwei

MEV Competition:

- Base fee: 30 gwei

- Priority fee: 100+ gwei

- Total: 130+ gwei

Priority Fee Calculation

Formula: Miner's extra reward above base fee

Market Forces: Competition determines priority fee levels **MEV Impact:** High-priority transactions drive priority fees up

Block Building Strategies

Traditional Mining

Process:

- 1. Collect transactions from mempool
- 2. Sort by gas price
- 3. Fill block up to gas limit
- 4. Solve proof-of-work puzzle
- 5. Broadcast completed block

Challenges:

- Predictable ordering enables front-running
- No ability to optimize transaction selection
- Limited control over final block content

MEV-Boost Architecture

Components:

- Builders: Construct optimal blocks
- Validators: Choose best block from builders
- Relays: Facilitate block submission

Benefits:

- Validators can select best block without running builder infrastructure
- Competition between builders improves block optimization
- MEV extraction can be shared more efficiently

Front-Running Protection Mechanisms

Commit-Reveal Schemes

Mechanism:

- 1. Commit: Submit transaction hash (not content)
- 2. **Reveal:** Later submit actual transaction
- 3. **Benefit:** Transaction content protected during commit phase

Implementation:

```
Step 1: commit_hash = keccak256(transaction_data + salt)
Step 2: Submit commit_hash to contract
Step 3: After time delay, submit transaction_data + salt
Step 4: Contract verifies commit matches reveal
```

Batch Auctions

Concept: All transactions in same time window get same price

Benefits: Eliminates gas price competition

Challenges: Implementation complexity, timing coordination

Randomized Ordering

Method: Randomize transaction order within blocks **Benefits:** Reduces predictability of front-running

Challenges: May reduce validator revenue, complex implementation

Real-World Block Analysis

Sample Block #18,000,000

Block Statistics:

- Total Transactions: 153

- **Gas Used:** 29,847,891 (99.2% of limit)

- Average Gas Price: 67.2 gwei- Block Time: 12.3 seconds

- Total Fees: 2.01 ETH

Transaction Breakdown:

- Simple transfers: 134 transactions (87.6%)

- ERC-20 transfers: 12 transactions (7.8%)

- DeFi interactions: 5 transactions (3.3%)

- MEV bundles: 2 transactions (1.3%)

MEV Transaction Patterns

Typical MEV Bundle Structure:

Bundle Contents:

- Front-run transaction (sandwich victim's trade)
- 2. Victim transaction (arbitrage opportunity)
- 3. Back-run transaction (complete the arbitrage)
- 4. Liquidation transaction (if applicable)

Gas Pricing:

- All transactions: 150 gwei (2.2x average)
- Bundle submitted via Flashbots relay
- Included in same block (atomic execution)

Technical Deep Dive: Transaction Simulation

Why Simulate?

- 1. Profit Calculation: Estimate net profit before execution
- 2. Competition Assessment: Understand competing transactions
- 3. Gas Optimization: Minimize costs while ensuring inclusion
- 4. Failure Prevention: Test before submitting real funds

Simulation Process

- 1. Fork current blockchain state
- 2. Execute hypothetical transaction
- 3. Record state changes and gas usage
- 4. Calculate profitability
- 5. Compare to competing scenarios

Tools and Libraries

- Tenderly: Transaction simulation platform
- Brownie: Python framework for testing
- · Hardhat: JavaScript development environment
- Foundry: Rust-based smart contract suite

MEV and Network Congestion

High-Activity Periods

Characteristics:

- 2-5x normal transaction volume
- 3-10x higher gas prices
- Increased MEV competition
- Higher failure rates for marginal transactions

MEV Impact During Congestion:

- More arbitrage opportunities due to price volatility
- Increased sandwich attack profits
- Higher gas costs reduce net MEV
- Faster execution critical for success

Famous MEV Incidents

1. Uniswap V3 LP Incident (June 2023):

- \$2.4M in sandwich attacks during one hour
- Triggered by large LP position update
- Demonstrated MEV on concentrated liquidity pools

2. LUNA/UST Collapse (May 2022):

- Massive arbitrage opportunities during depeg
- \$50M+ in MEV extraction during 48 hours
- Led to development of L2 MEV protection

3. Merge Weekend (September 2022):

- Reduced MEV due to validator changes
- 60% drop in sandwich attacks
- Demonstrated impact of consensus changes

Future Developments

Ethereum Roadmap

1. Danksharding (2024-2025):

- 1,000x increase in data availability
- New types of MEV opportunities
- Reduced transaction costs

2. Proposer-Builder Separation:

- Validators focus on consensus
- Specialized block builders
- More sophisticated MEV strategies

Alternative Approaches

1. Pre-trade Privacy:

- Transaction contents encrypted until execution
- Prevents front-running at network level
- Technical challenges remain

2. Formal Verification:

- Mathematical proofs of MEV protection
- Protocol-level guarantees
- Integration with existing systems

Practical Exercise

Transaction Analysis

Scenario: You detect a large DEX trade in the mempool

Trade Details:
- Token: UNI

- Size: 10,000 UNI

- Current Price: \$8.50

- Trade Impact: Estimated 2% price increase

- Your Capital: 100 ETH - Gas Budget: 0.5 ETH

Tasks:

- 1. Calculate potential sandwich profit
- 2. Determine optimal gas price strategy
- 3. Plan transaction bundle structure
- 4. Assess competition risks

Solution Framework

Step 1: Price Impact Analysis - Current price: \$8.50 - Expected new price: \$8.67 (2% increase) - Profit per token: \$0.17 Step 2: Trade Size Optimization - Max tokens you can trade: 100 ETH / \$8.50 = 11.76 UNI - Realistic trade size: 10 UNI (avoids detection) - Total profit: 10 × <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mn>0.17</mn><mo>=</mo></mrow></math></ span>1.70 Step 3: Gas Cost Consideration - Estimated gas cost: 0.3 ETH (<math xmlns="http://www.w3.org/1998/Math/ MathML" display="inline"><mrow><mn>450</mn><mi>a</mi></mi></ mrow></math>1500/ETH) - Net profit: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mn>1.70</mn><mo>−</mo></mrow></math></ span>450 = negativeConclusion: Opportunity not profitable given gas costs

Module Summary

Key Concepts

- Mempool: Waiting area for pending transactions
- Gas Auctions: Competition for block space
- Transaction Ordering: Determines MEV opportunities
- Block Building: Process of creating blockchain blocks
- Front-Running: Extracting value from transaction knowledge

Technical Skills Acquired

- Understanding blockchain transaction flow
- Knowledge of mempool mechanics
- Familiarity with block building process
- Insights into MEV extraction timing

Next Steps

- Module 3: Learn about MEV ecosystem participants
- Module 4: Explore specific MEV strategies
- Module 5: Understand market impact and ethics
- Module 6: Analyze real-world MEV transactions

Quick Check: Test Your Understanding

1. W	hat primarily	determines	transaction	ordering in	Ethereum	blocks?
-------------	---------------	------------	-------------	-------------	-----------------	---------

- -[] Transaction timestamp
- -[] Gas price (highest first)
- -[] Transaction size

2. What is the typical time between Ethereum blocks?

- -[] 5-8 seconds
- -[] 12-15 seconds
- -[] 30-45 seconds

3. How does MEV-Boost improve on traditional mining?

- -[] Faster block times
- -[] Separates block building from validation
- -[] Reduces gas costs

4. What is a key limitation of the public mempool?

- [] Limited transaction capacity
- -[] Enables front-running
- [] Slow transaction propagation

This module is part of the MEV Fundamentals course by ObeliskCore Education. For questions or feedback, contact our support team.