Module 4: Types of MEV Strategies

Duration: 75 minutes | **Level:** Beginner | **Author:** Obelisk Core

Learning Objectives

By the end of this module, you will:

- Understand the three main types of MEV strategies in detail
- Learn technical implementation approaches for each strategy type
- Analyze real-world examples and case studies
- Explore advanced MEV techniques and emerging opportunities

MEV Strategy Classification

Primary Categories

```
MEV Strategies

├── Arbitrage MEV (60% of total MEV)

├── DEX Arbitrage

├── Cross-Chain Arbitrage

├── Triangular Arbitrage

├── Liquidation MEV (30% of total MEV)

├── Protocol Liquidations

├── Cross-Protocol Liquidations

├── Cascading Liquidations

├── Sandwich Attack MEV (10% of total MEV)

├── Simple Sandwich

├── Complex Sandwich
```

Strategy Characteristics

- Capital Requirements: Vary from 0(flashloans)to 100M+
- Risk Level: Low to extremely high
- Technical Complexity: Basic to advanced
- Competition: Moderate to extremely competitive

Arbitrage MEV

Definition and Mechanics

Arbitrage MEV involves exploiting price differences across different venues, protocols, or assets to generate profits.

DEX Arbitrage

Core Concept

```
Price on DEX A: 100 USDC per token
Price on DEX B: 102 USDC per token
Opportunity: Buy on A, sell on B
Profit per token: 2 USDC (minus fees and gas)
```

Implementation Requirements

1. Price Monitoring

- Real-time price feeds from multiple DEXs
- Slippage calculation and estimation
- Gas cost prediction
- Liquidity depth analysis

2. Execution Infrastructure

- Low-latency transaction submission
- Optimal gas price selection
- Slippage protection mechanisms
- Failure handling and rollback

3. Capital Management

- Sufficient capital for trades
- Gas reserve for failed attempts
- Risk management for position exposure

DEX Arbitrage Example

Scenario: ETH/USDC arbitrage opportunity

```
Initial State:
   Uniswap V3: 1 ETH = 1,850 USDC
   SushiSwap: 1 ETH = 1,855 USDC
   Gas estimate: 0.08 ETH
   Trade size: 10 ETH

Calculation:
Buy on Uniswap: 10 ETH × 1,850 = 18,500 USDC
Sell on SushiSwap: 10 ETH × 1,855 = 18,550 USDC
Gross profit: 50 USDC
Gas cost: 0.08 ETH = 150 USDC (at $1,875/ETH)
Net profit: -100 USDC (not profitable)

Optimal Trade Size:
Max profitable size: 50 USDC ÷ 0.08 ETH = 625 USDC per ETH
Optimal trade: 0.27 ETH
Actual profit: 0.27 × 5 USDC - 0.08 ETH = 1.35 - 150 = -148.65 USDC
```

Result: Opportunity not profitable with \$1,875 ETH price and high gas costs

Advanced DEX Arbitrage

Flashloan Arbitrage:

```
Capital Requirement: $0 (borrowed funds)

Process:

1. Flashloan 100 ETH from Aave

2. Execute arbitrage: Uniswap → SushiSwap

3. Repay flashloan + fees

4. Keep remaining profit

Requirements:

- Integration with flashloan-enabled protocols

- Atomic execution capability

- Accurate profit calculation
```

Cross-DEX Optimization:

- Route optimization across multiple DEXs
- Liquidity fragmentation exploitation
- Optimal trade size calculation
- Fee optimization strategies

Cross-Chain Arbitrage

Multi-Chain Opportunities

Ethereum → **Arbitrum** → **Optimism arbitrage**

ETH Price on Ethereum: \$1,875 ETH Price on Arbitrum: \$1,878 ETH Price on Optimism: \$1,872

Opportunity Path:

- 1. Buy ETH on Ethereum (\$1,875)
- 2. Bridge to Arbitrum (cost: ~\$15)
- 3. Sell on Arbitrum (\$1,878)
- 4. Bridge to Optimism (cost: ~\$12)
- 5. Buy back on Optimism (\$1,872)
- 6. Bridge back to Ethereum

Complexity Factors:

- Bridge delays and costs
- Price volatility during bridge time
- Chain-specific liquidity differences
- Gas cost optimization across chains

Bridge Arbitrage Strategies

- · Monitor multiple bridges for price discrepancies
- Time bridge crossings with market movements
- Optimize bridge selection based on costs
- Manage cross-chain position risks

Triangular Arbitrage

Three-Asset Arbitrage

```
Path: ETH → USDC → UNI → ETH

Initial State:
- ETH/USDC: 1 ETH = 1,850 USDC
- USDC/UNI: 1 USDC = 0.75 UNI
- UNI/ETH: 1 UNI = 0.00054 ETH

Arbitrage Calculation:
Start with 1 ETH
Convert to USDC: 1 × 1,850 = 1,850 USDC
Convert to UNI: 1,850 ÷ 0.75 = 2,467 UNI
Convert back to ETH: 2,467 × 0.00054 = 1.332 ETH
Profit: 0.332 ETH (17.9% return)

After Gas Costs and Slippage:
Actual return: ~15% (still highly profitable)
```

Technical Implementation

- Real-time price feed aggregation
- Path optimization algorithms
- Slippage impact calculation
- Gas cost optimization

Liquidation MEV

Definition and Purpose

Liquidation MEV involves closing undercollateralized lending positions to capture liquidation bonuses.

How Liquidation Works

Collateralization Ratio

```
Lending Protocol Example (Aave):
- Collateral Requirement: 150%
- Liquidation Threshold: 145%
- Liquidation Bonus: 7%
Position Example:
- Borrowed: 1,000 USDC
- Collateral: 2.0 ETH @ <span class="math-inline" style="display:
inline;"><math xmlns="http://www.w3.org/1998/Math/MathML"</pre>
display="inline"><mrow><mn>1</mn><mo>&#x0002C;</mo><mn>875/
mn><mo>&#x0003D;</mo></mrow></math></span>3,750
- Ratio: 3,750 \div 1,000 = 375\% (safe)
Price Drop Scenario:
- ETH drops to $1,000
- New value: 2.0 ETH @ <span class="math-inline" style="display:
inline;"><math xmlns="http://www.w3.org/1998/Math/MathML"</pre>
display="inline"><mrow><mn>1</mn><mo>&#x0002C;</mo><mn>000/
mn><mo>&#x0003D;</mo></mrow></math></span>2,000
- New ratio: 2,000 \div 1,000 = 200\% (still safe)
Further Drop:
- ETH drops to $750
- New value: 2.0 ETH @ <span class="math-inline" style="display:
inline;"><math xmlns="http://www.w3.org/1998/Math/MathML"</pre>
display="inline"><mrow><mn>750</mn><mo>&#x0003D;</mo></mrow></math></
span>1,500
- New ratio: 1,500 \div 1,000 = 150\% (liquidated)
Liquidation Trigger:
- Seizer gets: 1,000 USDC + 70 USDC (7% bonus)
- Seizer pays: 2.0 ETH (or equivalent)
- Protocol recovers: 1,070 USDC from liquidation
```

Protocol-Specific Parameters

Aave V3:

- Liquidation Threshold: 82.5%

- Liquidation Bonus: 5-10% (varies by asset)
- Gas Cost: ~0.01-0.05 ETH
- Competition: High (many liquidators)

Compound:

- Liquidation Threshold: 75%
- Liquidation Bonus: 5%
- Gas Cost: ~0.008-0.03 ETH
- Competition: Moderate

MakerDAO:

- Liquidation Threshold: 150%
- Liquidation Penalty: 13%
- Auction-based system
- Competition: Very high

Liquidation MEV Process

Step-by-Step Implementation

1. Position Monitoring

Real-time tracking of:
├── Collateral prices
├── Loan-to-value ratios
— Liquidation thresholds
└── Position sizes and borrowers

2. Profit Calculation

Opportunity Analysis:

Position Value: \$1,000,000 Liquidation Threshold: 150%

Current Ratio: 155% (approaching liquidation)

Bonus: 7%

Gas Estimate: 0.02 ETH (\$37.50)

Profit Calculation:

Gross Bonus: <math

xmlns="http://www.w3.org/1998/Math/MathML"

display="inline"><mrow><mn>1</mn><mo>,</mo><mn>000</

mn><mo>,</mo><mn>000</mn><mi>></mi><mn>7</mn></mrow></math></

span>70,000

Gas Cost: \$37.50

Net Profit: \$69,962.50

Competition Risk: 40% chance of being frontrun

3. Execution Strategy

- Determine optimal gas price
- Submit liquidation transaction
- Handle competing liquidators
- Monitor transaction inclusion

Advanced Liquidation Strategies

Cascading Liquidations:

```
Single Price Drop → Multiple Liquidations

Market Event:
- ETH drops 20% in 5 minutes
- Aave positions at various ratios

Liquidation Sequence:
1. Positions at 150% ratio liquidate first
2. Price impact from liquidations
3. More positions drop below threshold
4. Chain reaction continues

MEV Opportunity:
Monitor for potential cascades
Execute early liquidations
Capture multiple liquidation bonuses
```

Cross-Protocol Liquidations:

Multiple Protocols = Multiple Opportunities
Portfolio Approach:
├── Monitor Aave positions
— Track Compound loans
├── Watch MakerDAO CDPs
├── Scan specialized protocols
Benefit: Diversified opportunity source
Challenge: Multiple technical integrations

Liquidation MEV Economics

Profit Factors

- Position Size: Larger positions = higher bonuses
- **Liquidation Threshold:** Lower thresholds = more liquidations
- Bonus Percentage: Higher bonuses = better profits
- Gas Competition: Lower gas = higher net profits

Risk Assessment

- · Frontrunning Risk: Others may execute first
- Gas Market Risk: Sudden gas price increases
- Liquidity Risk: Unable to liquidate position
- Protocol Risk: Smart contract vulnerabilities

Sandwich Attack MEV

Definition and Mechanics

Sandwich attacks involve placing transactions immediately before and after a victim's transaction to profit from the price impact.

Simple Sandwich Attack

Attack Pattern

```
Victim Transaction: Large DEX trade
Execution Sequence:
1. Front-Run: Detect victim's trade, buy before them
2. Victim Trade: Large trade moves price favorably
3. Back-Run: Sell acquired assets for profit
Example:
Token A price: $100
Victim buys 1,000 tokens (drives price to $110)
Sandwich attack:
- Buy 50 tokens at $100
- Victim buys, price moves to $110
- Sell 50 tokens at $110
- Profit: 50 × <span class="math-inline" style="display:
inline;"><math xmlns="http://www.w3.org/1998/Math/MathML"
display="inline"><mrow><mn>10</mn><mo>&#x0003D;</mo></mrow></math></
span>500
```

Technical Requirements

- Mempool Monitoring: Detect victim trades before inclusion
- Price Impact Prediction: Estimate slippage from large trades

- Transaction Coordination: Ensure bundle inclusion
- · Slippage Protection: Minimize own trade impact

Complex Sandwich Attacks

Multi-Victim Sandwich

```
Target: Multiple victim transactions in same block

Attack Structure:

Victim 1: Large UNI buy (price impact +2%)

Victim 2: Large UNI sell (price impact -1.5%)

Victim 3: Large UNI buy (price impact +3%)

Sandwich Strategy:

1. Front-run all three victims

2. Buy before first victim (+2% gain)

3. Sell between second and third victims

4. Buy again before third victim (+3% gain)

5. Back-run final victim

Total Profit: Combined impact from all victims
```

Sandwich with Liquidation

```
Cross-Strategy Opportunity:

Victim Transaction: Large trade triggers liquidation
Attack Sequence:

1. Front-run victim trade
2. Execute victim's trade (moves price)
3. Trigger liquidation of existing position
4. Back-run victim's position
5. Capture liquidation bonus + trade profit

Benefit: Multiple profit sources in single bundle
Challenge: Complex execution coordination
```

Sandwich Protection Mechanisms

User-Implemented Protection

```
Slippage Tolerance Protection:
- Set tight slippage limits
- Use limit orders when possible
- Submit transactions privately
- Monitor for potential sandwich attacks
Example Protection:
Victim Transaction:
- Trade Size: 10,000 UNI
- Max Slippage: 0.5%
- Max Price Impact: <span class="math-inline" style="display:
inline; "><math xmlns="http://www.w3.org/1998/Math/MathML"
display="inline"><mrow><mn>102.50</mn><mo stretchy="false">&#x00028;</
mo><mi>i</mi><mi>f</mi><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi>
span>102)
Attack Analysis:
Expected slippage: 2% (victim trade)
Attack viability: High (5x above user limit)
User protection: Effective (transaction would fail)
```

Protocol-Level Protection

```
Uniswap V3 Protection:
```

- Concentrated liquidity reduces price impact
- Slippage protection mechanisms
- TWAP (Time-Weighted Average Price) oracles
- Private transaction support

1inch Protection:

- Advanced pathfinding algorithms
- Price impact minimization
- MEV-resistant routing
- Private transaction submission

Advanced MEV Techniques

Non-Standard MEV Strategies

Time-Window Arbitrage

Concept: Exploit predictable price movements

Example: Governance Token Voting

- 1. Monitor upcoming governance votes
- 2. Identify tokens likely to appreciate
- 3. Buy before vote announcement
- 4. Sell after price increase

Risk Factors:

- Vote outcome uncertainty
- Price moves before announcement
- Other participants with similar strategies

NFT MEV

Opportunities in NFT Markets:

Floor Sweeping:

- Detect underpriced NFT listings
- Sweep floor before others notice
- Resell at market price

Collection Launch Sniping:

- Monitor new NFT collections
- Mint at floor price
- Quick flip for profit

Rare Trait Hunting:

- Identify rare trait combinations
- Mint strategies targeting rare traits
- Premium pricing for rare items

Governance MEV

Token Vote Exploitation:

Pre-Vote Position Building:

- 1. Buy governance tokens before proposal
- 2. Vote for proposal that benefits you
- 3. Sell tokens after vote passes

MEV Considerations:

- Requires significant token holdings
- Long-term time horizons
- Regulatory considerations
- Community reputation impact

Cross-Protocol MEV

Multi-Protocol Arbitrage

DeFi Protocol Coordination:

Lending \rightarrow DEX \rightarrow Lending Arbitrage

- 1. Identify overpriced lending rates
- 2. Borrow from expensive lender
- 3. Lend at higher rate elsewhere
- 4. Pocket the spread

Requirements:

- Integration with multiple protocols
- Risk management across protocols
- Gas optimization across platforms

Strategy Performance Analysis

Arbitrage MEV Performance

```
Average Returns (2023-2024):
├── Simple DEX Arbitrage: 0.1-2% per opportunity
├─ Flashloan Arbitrage: 0.05-1% per trade
├── Cross-Chain Arbitrage: 1-5% per opportunity
└─ Triangular Arbitrage: 2-10% per cycle
Success Rates:
├── Profitable opportunities: 60-80%
├── Break-even opportunities: 15-25%
└─ Losing opportunities: 5-15%
Capital Utilization:
├── Average trade size: <span class="math-inline" style="display:
inline;"><math xmlns="http://www.w3.org/1998/Math/MathML"</pre>
display="inline"><mrow><mn>50</mn><mi>K</mi><mo>&#x02212;</mo></mrow></
math></span>500K
├─ Capital turnover: 10-50x per day
├─ Risk-adjusted returns: 15-35% annually
```

Liquidation MEV Performance

Sandwich Attack Performance

```
Average Returns:
├── Simple sandwich: <span class="math-inline" style="display:
inline;"><math xmlns="http://www.w3.org/1998/Math/MathML"</pre>
display="inline"><mrow><mn>100</mn><mo>&#x02212;</mo></mrow></math></
span>5,000 per attack
├── Complex sandwich: <span class="math-inline" style="display:
inline;"><math xmlns="http://www.w3.org/1998/Math/MathML"</pre>
display="inline"><mrow><mn>1</mn><mo>&#x0002C;</mo><mn>000/
mn><mo>&#x02212;</mo></mrow></math></span>50,000 per attack
inline;"><math xmlns="http://www.w3.org/1998/Math/MathML"</pre>
display="inline"><mrow><mn>5</mn><mo>&#x0002C;</mo><mn>000/
mn><mo>&#x02212;</mo></mrow></math></span>500,000 per attack
Frequency:
├── Daily attacks: 50-200 (varies with market activity)
── Success rate: 70-85%
├─ Average attack duration: 10-30 seconds
Market Impact:
— Contributes to price volatility
├─ Reduces user trading efficiency
├── Drives protocol innovation for protection
```

Risk Management

Technical Risks

Execution Failures

Common Failure Modes:
├── Gas price competition loss
— Transaction ordering conflicts
├── Smart contract reverts
└── Network congestion issues
Mitigation Strategies:
├── Gas price optimization
— Multiple relay submission
— Transaction simulation testing
└── Fallback execution paths

Competition Risks

Competitive Threats:	
Countermeasures: Technology investment Infrastructure optimization Capital scaling Strategic positioning	

Financial Risks

Capital Requirements

Risk-Adjusted Returns

```
Expected Returns by Strategy:
Arbitrage: 15-25% annually
Liquidation: 20-35% annually
Sandwich: 10-100% annually (highly volatile)

Risk Factors:
— Market volatility
— Competition intensity
— Technology obsolescence
— Regulatory changes
```

Real-World Case Studies

Case Study 1: The Terra Luna MEV Event

Context: Massive price movement creates unprecedented MEV opportunities

Timeline:

- May 9, 2022: UST depeg begins

- May 11, 2022: Luna price crashes 99%
- MEV extraction: \$50M+ over 48 hours

MEV Activities:

Arbitrage Opportunities: ├── UST/USDC price discrepancies ├── Cross-chain arbitrage (Terra → Ethereum) ├── DEX price fragmentation └── CEX-DEX price gaps
Liquidation Cascades:
— Collateral value destruction
— Automated liquidations
├── Manual liquidations
Cross-protocol liquidations
Technical Challenges:
├── Network congestion
├── Gas price spikes
├── API failures
└── Liquidity constraints

Lessons:

- Extreme market conditions create massive MEV
- Infrastructure resilience crucial during crises
- Capital requirements scale with opportunity size
- Risk management becomes critical

Case Study 2: Uniswap V3 MEV Evolution

Context: Concentrated liquidity creates new MEV landscape

Innovation:

- Concentrated liquidity pools
- Position-dependent pricing
- NFT-style LP positions
- New MEV opportunities

New Strategies:

Concentrated Liquidity Arbitrage:
├── Monitor price range updates
— Arbitrage between ranges
- Front-run range changes
└── Exploit position exits
NFT MEV:
├── LP position NFT identification
├── Rarity-based arbitrage
Position ownership tracking
└── Dynamic pricing models

Impact:

- 3x increase in arbitrage opportunities
- New sandwich attack vectors
- Enhanced liquidation strategies
- Protocol-level MEV protection needs

Case Study 3: Layer 2 MEV Landscape

Context: Arbitrum and Optimism create new MEV environments

L2 Characteristics:

Arbitrum:
└── MEV-aware ordering
Optimism:

MEV Differences:

- Faster finality reduces opportunity window
- Centralized sequencing creates different dynamics
- Low gas costs enable new strategies
- New protocols create novel opportunities

Lessons:

- MEV adapts to new environments
- Architecture changes affect MEV types
- Low latency doesn't eliminate MEV
- New opportunities emerge in L2 ecosystems

Strategy Selection Guide

Choosing Your MEV Strategy

Factor Analysis

```
Strategy Selection Criteria:
Capital Requirements:
- Flashloan eligible: Liquidation MEV
- $50K-200K: Simple arbitrage
- $200K-1M: Complex arbitrage + liquidation
- $1M+: All strategies including sandwich
Technical Skills:
- Beginner: Liquidation MEV
- Intermediate: DEX arbitrage
- Advanced: Cross-chain + sandwich
- Expert: Multi-strategy optimization
Risk Tolerance:
- Low: Liquidations (predictable)
- Medium: Arbitrage (moderate risk)
- High: Sandwich (high risk/reward)
Market Conditions:
- Low volatility: Focus on arbitrage
- High volatility: All strategies active
- Crisis periods: Liquidation opportunities
- New protocol launches: Various strategies
```

Portfolio Approach

```
Diversified MEV Strategy:

Core Holdings (70%):

— 50% Liquidation MEV (stable returns)

— 30% Simple arbitrage (moderate risk)

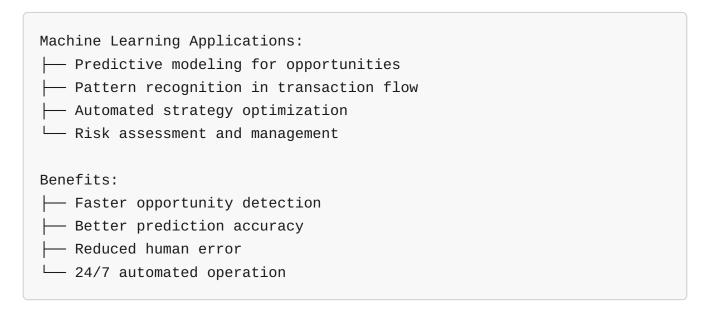
— 20% Capital reserves

Growth Opportunities (20%):

— 15% Complex arbitrage

— 5% Cross-chain opportunities

High-Risk/High-Reward (10%):


— 7% Sandwich attacks

— 3% Experimental strategies
```

Future of MEV Strategies

Emerging Trends

AI-Powered MEV

Cross-Chain MEV

NFT and GameFi MEV

New Opportunity Areas:
├── NFT floor sweeping
├── Gaming asset arbitrage
├── Yield farming optimization
└─ Governance token manipulation
Growth Drivers:
├── NFT market expansion
├── DeFi-GameFi convergence
└── New economic models
Play-to-earn adoption DeFi-GameFi convergence

Regulatory Evolution

Potential Impacts:

- Securities regulations for MEV firms
- Market manipulation definitions
- Tax treatment standardization
- International coordination frameworks

Technology Development

Upcoming Changes:

- Ethereum 2.0 MEV integration
- Layer 2 MEV optimization

- Privacy-preserving MEV
- Decentralized MEV protocols

Interactive Exercise

Strategy Implementation Planning

Scenario: You have \$500K capital and strong technical skills

Tasks:

- 1. Choose optimal strategy mix
- 2. Calculate expected returns
- 3. Identify required infrastructure
- 4. Assess competition risks
- 5. Plan risk management approach

Solution Framework:

```
Strategy Allocation (based on $500K capital):
Liquidation MEV (50% - $250K):
- Expected return: 25% annually
- Risk level: Low-Medium
- Infrastructure: Price monitoring, liquidation bots
- Competition: High but manageable
Arbitrage (35% - $175K):
- DEX arbitrage: $100K
- Cross-chain arbitrage: $75K
- Expected return: 20% annually
- Risk level: Medium
- Infrastructure: Multi-DEX integration, bridge APIs
Sandwich (15% - $75K):
- Expected return: Variable (10-200%)
- Risk level: High
- Infrastructure: Mempool monitoring, sandwich bots
- Competition: Extremely high
Total Expected Return:
Conservative estimate: 22% annually ($110K)
Optimistic estimate: 35% annually ($175K)
Risk-adjusted return: 18% annually ($90K)
```

Module Summary

Strategy Types Covered

Arbitrage MEV: Price differences across venues

• Liquidation MEV: Undercollateralized position closure

· Sandwich Attacks: Profiting from victim trades

Technical Implementation

- Real-time monitoring requirements
- Execution infrastructure needs
- Risk management frameworks

Performance optimization techniques

Economic Analysis

- Capital requirements by strategy
- Expected returns and risk profiles
- Competition dynamics
- Market impact considerations

Next Steps

- Module 5: Understand market impact and ethics
- Module 6: Analyze real-world MEV transactions

Quick Check: Test Your Understanding

- 1. What percentage of total MEV does arbitrage typically represent?
 - -[]30-40%
 - -[]60-70%
 - -[]80-90%
- 2. What is the typical liquidation bonus in major lending protocols?
 - [] 1-3%
 - -[]5-10%
 - [] 15-20%
- 3. Which strategy typically requires the most capital?
 - -[] Arbitrage MEV
 - -[] Liquidation MEV
 - -[] Sandwich Attack MEV
- 4. What is a key limitation of flashloan-based strategies?
 - -[] High gas costs
 - -[] Limited transaction size
 - -[] Single-block execution requirement

This module is part of the MEV Fundamentals course by ObeliskCore Education. For questions or feedback, contact our support team.