
Position Sizing Fundamentals
Duration: 60 minutes
Level: Beginner-Intermediate
Author: Obelisk Core

Learning Objectives
By the end of this module, you will be able to:

Calculate optimal position sizes using multiple methodologies
Understand the relationship between risk tolerance and position sizing
Implement Kelly Criterion and fixed fractional methods
Analyze volatility-based position sizing techniques
Build automated position sizing systems

Introduction to Position Sizing
Position sizing is the foundation of successful MEV trading. It's not just about how much
you can trade—it's about determining how much you should trade to maximize returns
while protecting your capital from devastating losses.

Why Position Sizing Matters
In MEV trading, position sizing is particularly critical because:

High frequency: You may execute hundreds of transactions daily
Variable gas costs: Network congestion affects profitability
Market volatility: Crypto markets experience rapid price swings
Liquidity constraints: Some opportunities have limited trade sizes
Correlation risks: Multiple strategies may be affected by the same events

The Mathematics of Risk
Position sizing is fundamentally about controlling risk. The key principle is:
Position Size = Account Balance × Risk Percentage
However, the challenge lies in determining the appropriate risk percentage for each
situation.

•
•
•
•
•

•
•
•
•
•

1 / 25

Core Position Sizing Methods

1. Fixed Fractional Method
The simplest approach involves risking a fixed percentage of your account balance on
each trade.

Formula:

Position Size = Account Balance × Risk Percentage

Max Loss = Position Size × Stop Loss Distance

Example Implementation:

def fixed_fractional_position_size(account_balance, risk_percentage,

stop_loss_pct):

position_size = account_balance * (risk_percentage / 100)

max_loss = position_size * (stop_loss_pct / 100)

return position_size, max_loss

Example usage

account_balance = 10,000

risk_percentage = 2 # Risk 2% per trade

stop_loss_pct = 1 # Stop loss at 1%

position_size, max_loss = fixed_fractional_position_size(

account_balance, risk_percentage, stop_loss_pct

)

print(f"Position Size: ${position_size:,.2f}")

print(f"Maximum Loss: ${max_loss:,.2f}")

Output: Position Size: <span class="math-inline" style="display:

inline;"><math xmlns="http://www.w3.org/1998/Math/MathML"

display="inline"><mrow><mn>200.00</mn><mo>,</mo><mi>M</

mi><mi>a</mi><mi>x</mi><mi>i</mi><mi>m</mi><mi>u</mi><mi>m</mi><mi>L</

mi><mi>o</mi><mi>s</mi><mi>s</mi><mi>:</mi></mrow></math>2.00

Advantages:
Simple to understand and implement
Automatically adjusts as account balance changes

•
•

2 / 25

Provides consistent risk exposure

Disadvantages:
Doesn't consider win rate or win/loss ratio
May lead to over-sizing in low-volatility environments
Doesn't account for strategy performance

2. Kelly Criterion
The Kelly Criterion optimizes position sizing based on the probability of winning and the
average win/loss ratio.

Formula:

Kelly% = (Win Rate × Average Win/Loss Ratio - Loss Rate) / Average Win/

Loss Ratio

Position Size = Account Balance × Kelly% × Safety Factor

•

•
•
•

3 / 25

Example Implementation:

def kelly_criterion_position_size(account_balance, win_rate,

win_loss_ratio, safety_factor=0.25):

loss_rate = 1 - win_rate

Calculate Kelly percentage

kelly_pct = (win_rate * win_loss_ratio - loss_rate) /

win_loss_ratio

Apply safety factor to reduce risk

kelly_pct = max(0, min(kelly_pct, 0.25)) # Cap at 25%

adjusted_kelly = kelly_pct * safety_factor

position_size = account_balance * adjusted_kelly

return position_size, adjusted_kelly, kelly_pct

Example usage

account_balance = 10,000

win_rate = 0.65 # 65% win rate

win_loss_ratio = 2.0 # Average win is 2x average loss

position_size, adj_kelly, raw_kelly = kelly_criterion_position_size(

account_balance, win_rate, win_loss_ratio

)

print(f"Raw Kelly: {raw_kelly:.2%}")

print(f"Adjusted Kelly: {adj_kelly:.2%}")

print(f"Position Size: ${position_size:,.2f}")

Advantages:
Mathematically optimal for maximizing long-term growth
Adapts to strategy performance metrics
Considers both win rate and win/loss ratio

Disadvantages:
Sensitive to input accuracy
Can lead to large position sizes with small edge
May not be suitable for small accounts

•
•
•

•
•
•

4 / 25

3. Volatility-Based Position Sizing
This method adjusts position size based on the volatility of the underlying asset.

Formula:

Position Size = Account Balance × Risk Percentage / Volatility

Volatility = Standard Deviation of Returns

5 / 25

Example Implementation:

import numpy as np

import pandas as pd

def volatility_based_position_size(account_balance, risk_percentage,

prices, lookback=30):

"""Calculate position size based on recent price volatility"""

Calculate returns

returns = np.diff(np.log(prices))

Calculate volatility (annualized standard deviation)

volatility = np.std(returns) * np.sqrt(365) # Annualized

Calculate position size

base_position = account_balance * (risk_percentage / 100)

volatility_adjustment = 0.2 / volatility # Target 20% annualized

volatility

position_size = base_position * volatility_adjustment

return position_size, volatility

Example usage with price data

prices = np.array([100, 102, 98, 105, 103, 107, 104, 110, 108, 115])

account_balance = 10,000

risk_percentage = 2

position_size, vol = volatility_based_position_size(

account_balance, risk_percentage, prices

)

print(f"Current Volatility: {vol:.2%}")

print(f"Position Size: ${position_size:,.2f}")

Advantages:
Adapts to market conditions automatically
Provides consistent risk exposure across different assets
Works well in varying volatility environments

•
•
•

6 / 25

Disadvantages:
Requires historical price data
May lag during sudden volatility changes
Can be complex to implement

Advanced Position Sizing Techniques

4. Risk Parity Approach
Risk parity aims to equalize risk contribution across all positions.

•
•
•

7 / 25

Implementation:

class RiskParityPositionSizer:

def __init__(self, account_balance):

self.account_balance = account_balance

self.positions = {}

self.target_risk = 0.02 # 2% target risk per position

def calculate_position_weights(self, returns_data):

"""Calculate weights for risk parity portfolio"""

Calculate covariance matrix

cov_matrix = np.cov(returns_data.T)

Calculate inverse volatility weights

volatilities = np.sqrt(np.diag(cov_matrix))

inv_vol_weights = 1 / volatilities

Normalize weights

weights = inv_vol_weights / inv_vol_weights.sum()

return weights

def allocate_positions(self, strategies_returns):

"""Allocate positions based on risk parity"""

weights = self.calculate_position_weights(strategies_returns)

for i, (strategy, weight) in

enumerate(zip(strategies_returns.columns, weights)):

position_value = self.account_balance * weight

risk_value = position_value * self.target_risk

self.positions[strategy] = {

'value': position_value,

'weight': weight,

'risk_value': risk_value

}

return self.positions

8 / 25

5. Dynamic Position Sizing
Adjusts position sizes based on recent performance and market conditions.

9 / 25

Example Implementation:

10 / 25

class DynamicPositionSizer:

def __init__(self, account_balance, base_risk=0.02):

self.account_balance = account_balance

self.base_risk = base_risk

self.performance_window = 50

self.max_risk_multiplier = 2.0

self.min_risk_multiplier = 0.5

def calculate_performance_multiplier(self, recent_returns):

"""Calculate risk multiplier based on recent performance"""

Calculate moving average and standard deviation

ma = np.mean(recent_returns)

volatility = np.std(recent_returns)

Performance-based adjustment

if ma > 0 and volatility > 0:

sharpe = ma / volatility

Scale position size based on Sharpe ratio

multiplier = max(self.min_risk_multiplier,

min(self.max_risk_multiplier, 1 + sharpe *

0.1))

else:

multiplier = self.min_risk_multiplier

return multiplier

def size_position(self, strategy_returns,

current_market_conditions):

"""Calculate position size with dynamic adjustments"""

recent_returns = strategy_returns.tail(self.performance_window)

Base position size

base_position = self.account_balance * self.base_risk

Apply performance multiplier

perf_multiplier =

self.calculate_performance_multiplier(recent_returns)

Apply market conditions multiplier

market_multiplier =

self.assess_market_conditions(current_market_conditions)

11 / 25

Final position size

final_multiplier = perf_multiplier * market_multiplier

position_size = base_position * final_multiplier

return position_size, final_multiplier

def assess_market_conditions(self, conditions):

"""Assess overall market conditions for risk adjustment"""

if conditions.get('volatility_regime') == 'high':

return 0.8 # Reduce size in high volatility

elif conditions.get('correlation_spike'):

return 0.9 # Reduce size during correlation spikes

elif conditions.get('liquidity_stress'):

return 0.7 # Reduce size during liquidity stress

else:

return 1.0 # Normal conditions

Position Sizing in MEV Context

Gas Cost Considerations
MEV opportunities often involve multiple transactions, so gas costs must be factored into
position sizing.

12 / 25

Gas-Adjusted Position Sizing:

13 / 25

def mev_position_size_with_gas(account_balance, opportunity, gas_costs,

risk_percentage=0.02):

"""Calculate position size accounting for gas costs"""

Base position size

base_position = account_balance * risk_percentage

Calculate break-even gas cost

profit_threshold = sum(gas_costs.values()) * 1.5 # 50% buffer

Adjust position size based on profit threshold

if opportunity.get('expected_profit', 0) > profit_threshold:

Position size limited by profit threshold

max_position_by_profit = profit_threshold / 0.01

Assuming 1% profit threshold

position_size = min(base_position, max_position_by_profit)

else:

position_size = base_position * 0.5 # Reduce size for low-

profit opportunities

return position_size

Example usage

opportunity = {

'expected_profit': 50, # Expected profit in USD

'confidence': 0.8,

'type': 'arbitrage'

}

gas_costs = {

'estimation': 0.002, # ETH

'execution': 0.003, # ETH

'cleanup': 0.001 # ETH

}

position_size = mev_position_size_with_gas(

account_balance=10000,

opportunity=opportunity,

gas_costs=gas_costs,

risk_percentage=0.02

)

print(f"Gas-adjusted position size: ${position_size:,.2f}")

14 / 25

Liquidity Constraints
Position sizing must also account for available liquidity in the market.

Liquidity-Adjusted Sizing:

def liquidity_constrained_position_size(desired_position,

market_liquidity, max_impact=0.01):

"""Adjust position size based on market liquidity"""

Calculate maximum position based on price impact

max_position_limited = market_liquidity * (max_impact /

market_liquidity) * 0.1

Use the smaller of desired or liquidity-constrained size

final_position = min(desired_position, max_position_limited)

Calculate actual price impact

price_impact = (final_position / market_liquidity) * 100

return final_position, price_impact

Example usage

desired_position = 1000 # USD

market_liquidity = 50000 # USD available at current price

max_impact = 0.01 # 1% maximum price impact

final_position, impact = liquidity_constrained_position_size(

desired_position, market_liquidity, max_impact

)

print(f"Final position: ${final_position:,.2f}")

print(f"Price impact: {impact:.2%}")

15 / 25

Building a Position Sizing System

Complete Position Sizing Framework

16 / 25

class ComprehensivePositionSizer:

def __init__(self, account_balance, max_drawdown=0.15):

self.account_balance = account_balance

self.max_drawdown = max_drawdown

self.current_drawdown = 0

self.method_preferences = {

'kelly': 0.4,

'fixed_fractional': 0.3,

'volatility_based': 0.3

}

def calculate_comprehensive_position_size(self, opportunity,

market_data):

"""Calculate position size using multiple methods and combine

results"""

Method 1: Kelly Criterion

kelly_size = self.kelly_criterion_size(opportunity)

Method 2: Fixed Fractional

fixed_size = self.fixed_fractional_size(opportunity)

Method 3: Volatility-based

volatility_size = self.volatility_based_size(opportunity,

market_data)

Combine methods with weights

combined_size = (

kelly_size * self.method_preferences['kelly'] +

fixed_size * self.method_preferences['fixed_fractional'] +

volatility_size *

self.method_preferences['volatility_based']

)

Apply drawdown adjustment

if self.current_drawdown > 0:

drawdown_multiplier = 1 - (self.current_drawdown /

self.max_drawdown)

combined_size *= max(drawdown_multiplier, 0.5)

Apply risk limits

max_position = self.account_balance * 0.1 # Never more than

17 / 25

10%

max_risk = self.account_balance * 0.02 # Never risk more

than 2%

final_size = min(combined_size, max_position, max_risk)

return {

'position_size': final_size,

'kelly_component': kelly_size,

'fixed_component': fixed_size,

'volatility_component': volatility_size,

'drawdown_multiplier': drawdown_multiplier if

self.current_drawdown > 0 else 1.0,

'risk_level': final_size / self.account_balance

}

def kelly_criterion_size(self, opportunity):

win_rate = opportunity.get('win_rate', 0.6)

win_loss_ratio = opportunity.get('win_loss_ratio', 2.0)

loss_rate = 1 - win_rate

kelly_pct = (win_rate * win_loss_ratio - loss_rate) /

win_loss_ratio

kelly_pct = max(0, min(kelly_pct, 0.25)) * 0.25

Apply safety factor

return self.account_balance * kelly_pct

def fixed_fractional_size(self, opportunity):

risk_pct = opportunity.get('risk_percentage', 0.02)

return self.account_balance * risk_pct

def volatility_based_size(self, opportunity, market_data):

volatility = market_data.get('volatility', 0.02)

base_risk = 0.02

if volatility > 0:

adjustment = base_risk / volatility

position_size = self.account_balance * adjustment *

base_risk

else:

position_size = self.account_balance * base_risk

18 / 25

return min(position_size, self.account_balance * 0.1)

def update_drawdown(self, new_balance):

"""Update current drawdown based on new balance"""

peak_balance = getattr(self, 'peak_balance',

self.account_balance)

self.peak_balance = max(peak_balance, new_balance)

self.current_drawdown = (self.peak_balance - new_balance) /

self.peak_balance

return self.current_drawdown

19 / 25

Risk Management Integration

Position Sizing with Stop Losses

def position_size_with_stop_loss(account_balance, risk_pct,

entry_price, stop_loss_price, leverage=1):

"""Calculate position size with integrated stop loss"""

Calculate risk amount

risk_amount = account_balance * (risk_pct / 100)

Calculate price difference for stop loss

price_diff = abs(entry_price - stop_loss_price)

Calculate position size

position_size = (risk_amount * leverage) / price_diff

Calculate actual risk percentage

actual_risk = (position_size * price_diff) / account_balance

return position_size, actual_risk

Example usage

account_balance = 10,000

risk_pct = 2

entry_price = 100

stop_loss_price = 95

leverage = 1

position_size, actual_risk = position_size_with_stop_loss(

account_balance, risk_pct, entry_price, stop_loss_price, leverage

)

print(f"Position size: {position_size:.2f} units")

print(f"Actual risk: {actual_risk:.2%}")

print(f"Risk amount: ${position_size * 5:.2f}")

20 / 25

Portfolio-Level Position Management

21 / 25

class PortfolioPositionManager:

def __init__(self, total_capital, max_total_risk=0.06):

self.total_capital = total_capital

self.max_total_risk = max_total_risk

self.active_positions = {}

self.allocated_risk = 0

def calculate_remaining_risk_capacity(self):

"""Calculate remaining risk capacity for new positions"""

return self.max_total_risk - self.allocated_risk

def add_position(self, position_id, proposed_size, risk_amount):

"""Add a new position if risk limits allow"""

if risk_amount / self.total_capital >

self.calculate_remaining_risk_capacity():

return False, "Insufficient risk capacity"

self.active_positions[position_id] = {

'size': proposed_size,

'risk': risk_amount

}

self.allocated_risk += risk_amount / self.total_capital

return True, "Position added successfully"

def remove_position(self, position_id):

"""Remove a position and free up risk capacity"""

if position_id in self.active_positions:

risk_freed = self.active_positions[position_id]['risk'] /

self.total_capital

self.allocated_risk -= risk_freed

del self.active_positions[position_id]

def rebalance_positions(self):

"""Rebalance all positions to maintain risk limits"""

remaining_capacity = self.calculate_remaining_risk_capacity()

if remaining_capacity < 0:

Need to reduce positions

total_excess = abs(remaining_capacity)

positions_to_reduce = []

22 / 25

for pos_id, pos_data in self.active_positions.items():

positions_to_reduce.append((pos_id, pos_data['risk']))

Reduce largest positions first

positions_to_reduce.sort(key=lambda x: x[1], reverse=True)

for pos_id, risk_amount in positions_to_reduce:

if total_excess <= 0:

break

reduction_needed = (risk_amount / self.total_capital) *

0.5 # Reduce by 50%

new_risk = risk_amount * 0.5

self.active_positions[pos_id]['risk'] = new_risk

total_excess -= reduction_needed

self.allocated_risk = self.max_total_risk

Practical Implementation

Setting Up Your Position Sizing System
Define Risk Parameters:
- Maximum daily risk (typically 2-5%)
- Maximum drawdown limit (typically 10-20%)
- Individual position limits (typically 1-5%)
Choose Your Method:
- Start with fixed fractional for simplicity
- Add Kelly Criterion for optimization
- Implement volatility-based for adaptive sizing
Monitor and Adjust:
- Track performance metrics
- Adjust parameters based on results
- Regular system reviews and updates

Common Pitfalls to Avoid
Over-sizing in Winning Streaks:
- Stick to predetermined position sizes
- Don't increase size after wins

1.

2.

3.

1.

23 / 25

Ignoring Correlation:
- Consider how positions relate to each other
- Reduce size when multiple correlated positions exist
Static Approaches:
- Adapt to changing market conditions
- Regularly review and update parameters
Emotional Decision Making:
- Follow systematic rules
- Avoid "making it back" mentality

Interactive Exercise

Position Sizing Calculator
Create a comprehensive position sizing calculator that:

Takes input parameters:
- Account balance
- Risk percentage per trade
- Win rate and win/loss ratio
- Current volatility
- Gas costs for MEV operations
Calculates position sizes using:
- Fixed fractional method
- Kelly Criterion
- Volatility-based approach
Provides recommendations:
- Recommended position size
- Risk assessment
- Potential profit/loss scenarios
Includes safeguards:
- Maximum position limits
- Drawdown warnings
- Risk concentration alerts

Key Takeaways
Position sizing is more important than entry timing - A good position sizing
system can make a mediocre strategy profitable.
Use multiple methods - Combine different approaches to create a robust system.

2.

3.

4.

1.

2.

3.

4.

1.

2.

24 / 25

Always account for gas costs - In MEV trading, gas expenses significantly impact
profitability.
Adapt to market conditions - Static position sizing doesn't work in dynamic
markets.
Risk management comes first - Protect capital first, profits second.
Test thoroughly - Backtest your position sizing system with historical data.
Monitor correlation - Don't put all risk in correlated positions.
Use automation - Manual position sizing leads to emotional decisions.

Next Steps
In the next module, we'll explore Portfolio Risk Metrics - how to measure and monitor
your overall portfolio performance using advanced risk metrics like Value at Risk, Sharpe
Ratio, and drawdown analysis.
You'll learn to:
- Calculate comprehensive risk metrics
- Set up real-time monitoring systems
- Build risk dashboards
- Implement automated alerts
- Create risk reporting frameworks

Summary
Position sizing is the cornerstone of successful MEV trading. By mastering the various
methods—from simple fixed fractional to advanced Kelly Criterion implementations—you
can build a robust foundation for your trading operations. Remember that the best
position sizing system is one that you can follow consistently, even during challenging
market conditions.
The key is to start simple, test thoroughly, and gradually add complexity as you gain
experience and data. Your position sizing system should evolve with your trading skills
and market understanding.

3.

4.

5.
6.
7.
8.

25 / 25

	Position Sizing Fundamentals
	Learning Objectives
	Introduction to Position Sizing
	Why Position Sizing Matters
	The Mathematics of Risk

	Core Position Sizing Methods
	1. Fixed Fractional Method
	Formula:
	Example Implementation:
	Advantages:
	Disadvantages:

	2. Kelly Criterion
	Formula:
	Example Implementation:
	Advantages:
	Disadvantages:

	3. Volatility-Based Position Sizing
	Formula:
	Example Implementation:
	Advantages:
	Disadvantages:

	Advanced Position Sizing Techniques
	4. Risk Parity Approach
	Implementation:

	5. Dynamic Position Sizing
	Example Implementation:

	Position Sizing in MEV Context
	Gas Cost Considerations
	Gas-Adjusted Position Sizing:

	Liquidity Constraints
	Liquidity-Adjusted Sizing:

	Building a Position Sizing System
	Complete Position Sizing Framework

	Risk Management Integration
	Position Sizing with Stop Losses
	Portfolio-Level Position Management

	Practical Implementation
	Setting Up Your Position Sizing System
	Common Pitfalls to Avoid

	Interactive Exercise
	Position Sizing Calculator

	Key Takeaways
	Next Steps
	Summary

