Position Sizing Fundamentals

Duration: 60 minutes
Level: Beginner-Intermediate
Author: Obelisk Core

Learning Objectives

By the end of this module, you will be able to:
+ Calculate optimal position sizes using multiple methodologies
+ Understand the relationship between risk tolerance and position sizing
+ Implement Kelly Criterion and fixed fractional methods
+ Analyze volatility-based position sizing techniques
+ Build automated position sizing systems

Introduction to Position Sizing

Position sizing is the foundation of successful MEV trading. It's not just about how much
you can trade—it's about determining how much you should trade to maximize returns
while protecting your capital from devastating losses.

Why Position Sizing Matters

In MEV trading, position sizing is particularly critical because:
- High frequency: You may execute hundreds of transactions daily
* Variable gas costs: Network congestion affects profitability
- Market volatility: Crypto markets experience rapid price swings
- Liquidity constraints: Some opportunities have limited trade sizes
+ Correlation risks: Multiple strategies may be affected by the same events

The Mathematics of Risk

Position sizing is fundamentally about controlling risk. The key principle is:
Position Size = Account Balance X Risk Percentage

However, the challenge lies in determining the appropriate risk percentage for each
situation.

1/25

Core Position Sizing Methods

1. Fixed Fractional Method

The simplest approach involves risking a fixed percentage of your account balance on
each trade.

Formula:

Position Size = Account Balance x Risk Percentage
Max Loss = Position Size x Stop Loss Distance

Example Implementation:

def fixed_fractional_position_size(account_balance, risk_percentage,
stop_loss_pct):
position_size = account_balance * (risk_percentage / 100)
max_loss = position_size * (stop_loss_pct / 100)
return position_size, max_loss

Example usage

account_balance 10, 000
2 # Risk 2% per trade

stop_loss_pct =1 # Stop loss at 1%

risk_percentage

position_size, max_loss = fixed_fractional_position_size(
account_balance, risk_percentage, stop_loss_pct

)

print(f"Position Size: ${position_size:,.2f}")

print(f"Maximum Loss: ${max_loss:, .2f}")

Output: Position Size: <span class="math-inline" style="display:

inline;"><math xmlns="http://www.w3.0rg/1998/Math/MathML"

display="inline"><mrow><mn>200.00</mn><mo>,</mo><mi>M</

mi><mi>a</mi><mi>x</mi><mi>i</mi><mi>m</mi><mi>u</mi><mi>m</mi><mi>L</

mi><mi>o</mi><mi>s</mi><mi>s</mi><mi>:</mi></mrow></math>2.00

Advantages:

+ Simple to understand and implement
+ Automatically adjusts as account balance changes

2/25

* Provides consistent risk exposure

Disadvantages:

« Doesn't consider win rate or win/loss ratio
+ May lead to over-sizing in low-volatility environments
- Doesn't account for strategy performance

2. Kelly Criterion

The Kelly Criterion optimizes position sizing based on the probability of winning and the
average win/loss ratio.

Formula:

Kelly% = (Win Rate x Average Win/Loss Ratio - Loss Rate) / Average Win/
Loss Ratio
Position Size = Account Balance x Kelly% x Safety Factor

3/25

Example Implementation:

def kelly criterion_position_size(account_balance, win_rate,
win_loss_ratio, safety_factor=0.25):
loss_rate = 1 - win_rate

Calculate Kelly percentage
kelly pct = (win_rate * win_loss_ratio - loss_rate) /
win_loss_ratio

Apply safety factor to reduce risk
kelly pct = max(0, min(kelly pct, 0.25)) # Cap at 25%
adjusted_kelly = kelly pct * safety_factor

position_size = account_balance * adjusted_kelly
return position_size, adjusted_kelly, kelly pct

Example usage

account_balance = 10,000

win_rate = 0.65 # 65% win rate

win_loss_ratio = 2.0 # Average win is 2x average loss

position_size, adj_kelly, raw_kelly = kelly criterion_position_size(
account_balance, win_rate, win_loss_ratio

)

print(f"Raw Kelly: {raw_kelly:.2%}")
print(f"Adjusted Kelly: {adj_kelly:.2%}")
print(f"Position Size: ${position_size:,.2f}")

Advantages:

+ Mathematically optimal for maximizing long-term growth
+ Adapts to strategy performance metrics
+ Considers both win rate and win/loss ratio

Disadvantages:

+ Sensitive to input accuracy
+ Can lead to large position sizes with small edge
+ May not be suitable for small accounts

4/25

3. Volatility-Based Position Sizing

This method adjusts position size based on the volatility of the underlying asset.

Formula:

Position Size = Account Balance x Risk Percentage / Volatility
Volatility = Standard Deviation of Returns

5/25

Example Implementation:

import numpy as np
import pandas as pd

def volatility based_position_size(account_balance, risk_percentage,
prices, lookback=30):
"""Calculate position size based on recent price volatility"""

Calculate returns
returns = np.diff(np.log(prices))

Calculate volatility (annualized standard deviation)
volatility = np.std(returns) * np.sqrt(365) # Annualized

Calculate position size

base_position = account_balance * (risk_percentage / 100)

volatility adjustment = 0.2 / volatility # Target 20% annualized
volatility

position_size = base_position * volatility_ adjustment

return position_size, volatility

Example usage with price data

prices = np.array([100, 102, 98, 105, 103, 107, 104, 110, 108, 115])
account_balance = 10,000

risk_percentage = 2

position_size, vol = volatility based_position_size(
account_balance, risk_percentage, prices

)
print(f"Current Volatility: {vol:.2%}")
print(f"Position Size: ${position_size:,.2f}")

Advantages:

+ Adapts to market conditions automatically
* Provides consistent risk exposure across different assets
+ Works well in varying volatility environments

6/25

Disadvantages:

* Requires historical price data
+ May lag during sudden volatility changes
+ Can be complex to implement

Advanced Position Sizing Techniques

4. Risk Parity Approach

Risk parity aims to equalize risk contribution across all positions.

7/25

Implementation:

class RiskParityPositionSizer:
def __init__ (self, account_balance):
self.account_balance = account_balance
self.positions = {}
self.target_risk = 0.02 # 2% target risk per position

def calculate_position_weights(self, returns_data):
"""Calculate weights for risk parity portfolio"""
Calculate covariance matrix
cov_matrix = np.cov(returns_data.T)

Calculate inverse volatility weights
volatilities = np.sqrt(np.diag(cov_matrix))
inv_vol_weights = 1 / volatilities

Normalize weights
weights = inv_vol weights / inv_vol_weights.sum()

return weights

def allocate_positions(self, strategies_returns):
"""Allocate positions based on risk parity"""
weights = self.calculate_position_weights(strategies_returns)

for i, (strategy, weight) in
enumerate(zip(strategies_returns.columns, weights)):
position_value = self.account_balance * weight
risk_value = position_value * self.target_risk

self.positions[strategy] = {
'value': position_value,

'weight': weight,
'risk_value': risk_value

return self.positions

8/25

5. Dynamic Position Sizing

Adjusts position sizes based on recent performance and market conditions.

9/25

Example Implementation:

10/25

class DynamicPositionSizer:
def __init__ (self, account_balance, base_risk=0.02):
self.account_balance = account_balance
self.base_risk = base_risk
self.performance_window = 50
2.0
0.5

self.max_risk_multiplier

self.min_risk_multiplier

def calculate_performance_multiplier(self, recent_returns):
"""Calculate risk multiplier based on recent performance"""
Calculate moving average and standard deviation
ma = np.mean(recent_returns)
volatility = np.std(recent_returns)

Performance-based adjustment
if ma > 0 and volatility > 0:
sharpe = ma / volatility
Scale position size based on Sharpe ratio

multiplier = max(self.min_risk multiplier,
min(self.max_risk_multiplier, 1 + sharpe *
0.1))
else:
multiplier = self.min_risk_multiplier

return multiplier

def size_position(self, strategy_returns,
current_market_conditions):
"""Calculate position size with dynamic adjustments"""
recent_returns = strategy_returns.tail(self.performance_window)

Base position size
base_position = self.account_balance * self.base_risk

Apply performance multiplier
perf_multiplier =
self.calculate_performance_multiplier(recent_returns)

Apply market conditions multiplier

market_multiplier =
self.assess_market_conditions(current_market_conditions)

11/25

Final position size
final_multiplier = perf_multiplier * market_multiplier
position_size = base_position * final_multiplier

return position_size, final_multiplier

def assess_market_conditions(self, conditions):

"""Assess overall market conditions for risk adjustment"""
if conditions.get('volatility regime') == 'high':

return 0.8 # Reduce size in high volatility
elif conditions.get('correlation_spike'):

return 0.9 # Reduce size during correlation spikes
elif conditions.get('liquidity_stress'):

return 0.7 # Reduce size during liquidity stress
else:

return 1.0 # Normal conditions

Position Sizing in MEV Context

Gas Cost Considerations

MEV opportunities often involve multiple transactions, so gas costs must be factored into
position sizing.

12 /25

Gas-Adjusted Position Sizing:

13/25

def mev_position_size_with_gas(account_balance, opportunity, gas_costs,
risk_percentage=0.02):
"""Calculate position size accounting for gas costs"""

Base position size
base_position = account_balance * risk_percentage

Calculate break-even gas cost
profit_threshold = sum(gas_costs.values()) * 1.5 # 50% buffer

Adjust position size based on profit threshold
if opportunity.get('expected_profit', ©) > profit_threshold:
Position size limited by profit threshold
max_position_by_profit = profit_threshold / 0.01
Assuming 1% profit threshold
position_size = min(base_position, max_position_by_ profit)
else:
position_size = base_position * 0.5 # Reduce size for low-
profit opportunities

return position_size

Example usage

opportunity = {
'expected_profit': 50, # Expected profit in USD
'confidence': 0.8,
"type': 'arbitrage'

gas_costs = {
'estimation': 0.002, # ETH
'execution': 0.003, # ETH
'cleanup': 0.001 # ETH

position_size = mev_position_size_with_gas(
account_balance=10000,
opportunity=opportunity,
gas_costs=gas_costs,
risk_percentage=0.02

)

print(f"Gas-adjusted position size: ${position_size:,.2f}")

14 /25

Liquidity Constraints

Position sizing must also account for available liquidity in the market.

Liquidity-Adjusted Sizing:

def liquidity_constrained_position_size(desired_position,
market_liquidity, max_impact=0.01):
"""Adjust position size based on market liquidity"""

Calculate maximum position based on price impact
max_position_limited = market_liquidity * (max_impact /

market_liquidity) * 0.1

Use the smaller of desired or liquidity-constrained size
final_position = min(desired_position, max_position_limited)

Calculate actual price impact
price_impact = (final_position / market_liquidity) * 100

return final _position, price_impact

Example usage

desired_position 1000 # USD
50000 # USD available at current price

max_impact = 0.01 # 1% maximum price impact

market_liquidity

final_position, impact = liquidity_constrained_position_size(
desired_position, market_liquidity, max_impact

)

print(f"Final position: ${final_position:,.2f}")

print(f"Price impact: {impact:.2%}")

15/25

Building a Position Sizing System

Complete Position Sizing Framework

16/25

class ComprehensivePositionSizer:
def __init__ (self, account_balance, max_drawdown=0.15):
self.account_balance = account_balance
self.max_drawdown = max_drawdown
self.current_drawdown = @

self.method_preferences = {
'kelly': 0.4,
'fixed_fractional': 0.3,
'volatility based': 0.3

def calculate_comprehensive_position_size(self, opportunity,
market_data):
"""Calculate position size using multiple methods and combine
results"""

Method 1: Kelly Criterion
kelly size = self.kelly criterion_size(opportunity)

Method 2: Fixed Fractional
fixed_size = self.fixed_fractional_size(opportunity)

Method 3: Volatility-based
volatility size = self.volatility_based_size(opportunity,
market_data)

Combine methods with weights
combined_size = (
kelly_size * self.method_preferences['kelly'] +
fixed_size * self.method_preferences['fixed_fractional'] +
volatility_size *
self.method_preferences['volatility based']

)

Apply drawdown adjustment
if self.current_drawdown > 0:
drawdown_multiplier = 1 - (self.current_drawdown /
self.max_drawdown)
combined_size *= max(drawdown_multiplier, 0.5)

Apply risk limits
max_position = self.account_balance * 0.1 # Never more than

17/25

10%
max_risk = self.account_balance * 0.02 # Never risk more
than 2%

final_size = min(combined_size, max_position, max_risk)

return {

'position_size': final_size,

'kelly component': kelly size,

'fixed_component': fixed_size,

'volatility_component': volatility_size,

"drawdown_multiplier': drawdown_multiplier if
self.current_drawdown > 0 else 1.0,

'risk_level': final_size / self.account_balance

def kelly_criterion_size(self, opportunity):
win_rate = opportunity.get('win_rate', 0.6)
win_loss_ratio = opportunity.get('win_loss_ratio', 2.0)

loss_rate = 1 - win_rate

kelly_pct = (win_rate * win_loss_ratio - loss_rate) /
win_loss_ratio

kelly_pct = max(0, min(kelly pct, 0.25)) * 0.25

Apply safety factor

return self.account_balance * kelly_pct

def fixed_fractional_size(self, opportunity):
risk_pct = opportunity.get('risk_percentage', 0.02)
return self.account_balance * risk_pct

def volatility_based_size(self, opportunity, market_data):
volatility = market_data.get('volatility',6 0.02)
base_risk = 0.02

if volatility > 0:
adjustment = base_risk / volatility
position_size = self.account_balance * adjustment *
base_risk
else:
position_size = self.account_balance * base_risk

18 /25

return min(position_size, self.account_balance * 0.1)

def update_drawdown(self, new_balance):
"""Update current drawdown based on new balance"""
peak_balance = getattr(self, 'peak_balance',
self.account_balance)
self.peak_balance = max(peak_balance, new_balance)

self.current_drawdown = (self.peak_balance - new_balance) /
self.peak_balance
return self.current_drawdown

19/25

Risk Management Integration

Position Sizing with Stop Losses

def position_size_with_stop_loss(account_balance, risk_pct,
entry_price, stop_loss_price, leverage=1):
"""Calculate position size with integrated stop loss"""

Calculate risk amount
risk_amount = account_balance * (risk_pct / 100)

Calculate price difference for stop loss
price_diff = abs(entry_price - stop_loss_price)

Calculate position size
position_size = (risk_amount * leverage) / price_diff

Calculate actual risk percentage
actual_risk = (position_size * price_diff) / account_balance

return position_size, actual_risk

Example usage
account_balance = 10,000
risk_pct = 2

entry_price = 100
stop_loss_price = 95
leverage = 1

position_size, actual_risk = position_size_with_stop_loss(
account_balance, risk_pct, entry_price, stop_loss_price, leverage

)

print(f"Position size: {position_size:.2f} units")
print(f"Actual risk: {actual_risk:.2%}")
print(f"Risk amount: ${position_size * 5:.2f}")

20/25

Portfolio-Level Position Management

21/25

class PortfolioPositionManager:
def __init__ (self, total_capital, max_total_risk=0.06):
self.total _capital = total_capital
self.max_total _risk = max_total_risk
self.active_positions = {}
self.allocated_risk = 0

def calculate_remaining_risk_capacity(self):
"""Calculate remaining risk capacity for new positions"""
return self.max_total risk - self.allocated_risk

def add_position(self, position_id, proposed_size, risk_amount):
"""Add a new position if risk limits allow"""
if risk_amount / self.total_capital >
self.calculate_remaining_risk_capacity():
return False, "Insufficient risk capacity"

self.active_positions[position_id] = {
'size': proposed_size,
'risk': risk_amount

}

self.allocated_risk += risk_amount / self.total_capital
return True, "Position added successfully"

def remove_position(self, position_id):
"""Remove a position and free up risk capacity"""
if position_id in self.active_positions:
risk_freed = self.active_positions[position_id]['risk'] /
self.total_capital
self.allocated_risk -= risk_freed
del self.active_positions[position_id]

def rebalance_positions(self):
"""Rebalance all positions to maintain risk limits"""
remaining_capacity = self.calculate_remaining_risk_capacity()

if remaining_capacity < 0:
Need to reduce positions
total_excess = abs(remaining_capacity)
positions_to_reduce = []

22/25

for pos_id, pos_data in self.active_positions.items():
positions_to_reduce.append((pos_id, pos_data['risk']))

Reduce largest positions first
positions_to_reduce.sort(key=lambda x: x[1], reverse=True)

for pos_id, risk_amount in positions_to_reduce:
if total_excess <= 0:
break

reduction_needed = (risk_amount / self.total_capital) *
0.5 # Reduce by 50%

new_risk = risk_amount * 0.5

self.active_positions[pos_id]['risk'] = new_risk
total_excess -= reduction_needed

self.allocated risk = self.max_total_risk

Practical Implementation

Setting Up Your Position Sizing System

1. Define Risk Parameters:
- Maximum daily risk (typically 2-5%)
- Maximum drawdown limit (typically 10-20%)
- Individual position limits (typically 1-5%)
2. Choose Your Method:
- Start with fixed fractional for simplicity
- Add Kelly Criterion for optimization
- Implement volatility-based for adaptive sizing

3. Monitor and Adjust:
- Track performance metrics
- Adjust parameters based on results
- Regular system reviews and updates

Common Pitfalls to Avoid

1. Over-sizing in Winning Streaks:
- Stick to predetermined position sizes
- Don't increase size after wins

23/25

2. Ignoring Correlation:
- Consider how positions relate to each other
- Reduce size when multiple correlated positions exist

3. Static Approaches:
- Adapt to changing market conditions
- Regularly review and update parameters

4. Emotional Decision Making:
- Follow systematic rules
- Avoid "making it back" mentality

Interactive Exercise

Position Sizing Calculator

Create a comprehensive position sizing calculator that:

1. Takes input parameters:
- Account balance
- Risk percentage per trade
- Win rate and win/loss ratio
- Current volatility
- Gas costs for MEV operations

2. Calculates position sizes using:
- Fixed fractional method
- Kelly Criterion
- Volatility-based approach

3. Provides recommendations:
- Recommended position size
- Risk assessment
- Potential profit/loss scenarios

4. Includes safeguards:
- Maximum position limits
- Drawdown warnings
- Risk concentration alerts

Key Takeaways

1. Position sizing is more important than entry timing - A good position sizing
system can make a mediocre strategy profitable.

2. Use multiple methods - Combine different approaches to create a robust system.

24/25

3. Always account for gas costs - In MEV trading, gas expenses significantly impact
profitability.

4. Adapt to market conditions - Static position sizing doesn't work in dynamic
markets.

5. Risk management comes first - Protect capital first, profits second.

6. Test thoroughly - Backtest your position sizing system with historical data.

7. Monitor correlation - Don't put all risk in correlated positions.

8. Use automation - Manual position sizing leads to emotional decisions.

Next Steps

In the next module, we'll explore Portfolio Risk Metrics - how to measure and monitor
your overall portfolio performance using advanced risk metrics like Value at Risk, Sharpe
Ratio, and drawdown analysis.

You'll learn to:

- Calculate comprehensive risk metrics
- Set up real-time monitoring systems
- Build risk dashboards

- Implement automated alerts

- Create risk reporting frameworks

Summary

Position sizing is the cornerstone of successful MEV trading. By mastering the various
methods—from simple fixed fractional to advanced Kelly Criterion implementations—you
can build a robust foundation for your trading operations. Remember that the best
position sizing system is one that you can follow consistently, even during challenging
market conditions.

The key is to start simple, test thoroughly, and gradually add complexity as you gain
experience and data. Your position sizing system should evolve with your trading skills
and market understanding.

25/25

	Position Sizing Fundamentals
	Learning Objectives
	Introduction to Position Sizing
	Why Position Sizing Matters
	The Mathematics of Risk

	Core Position Sizing Methods
	1. Fixed Fractional Method
	Formula:
	Example Implementation:
	Advantages:
	Disadvantages:

	2. Kelly Criterion
	Formula:
	Example Implementation:
	Advantages:
	Disadvantages:

	3. Volatility-Based Position Sizing
	Formula:
	Example Implementation:
	Advantages:
	Disadvantages:

	Advanced Position Sizing Techniques
	4. Risk Parity Approach
	Implementation:

	5. Dynamic Position Sizing
	Example Implementation:

	Position Sizing in MEV Context
	Gas Cost Considerations
	Gas-Adjusted Position Sizing:

	Liquidity Constraints
	Liquidity-Adjusted Sizing:

	Building a Position Sizing System
	Complete Position Sizing Framework

	Risk Management Integration
	Position Sizing with Stop Losses
	Portfolio-Level Position Management

	Practical Implementation
	Setting Up Your Position Sizing System
	Common Pitfalls to Avoid

	Interactive Exercise
	Position Sizing Calculator

	Key Takeaways
	Next Steps
	Summary

