Design and implement comprehensive team training programs for MEV operations including skill assessment, curriculum development, and performance evaluation
Complete institutional path
By the end of this course, you will be able to:
Evaluating current team capabilities and identifying training needs
180 minCreating role-specific training curricula and learning paths
200 minInstructor-led, online, and hands-on training approaches
160 minAssessment methods and competency certification
170 minOngoing development and skill enhancement programs
150 minDocumentation, mentoring, and expertise sharing systems
160 minimport asyncio
import logging
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Callable, Any, Union
from datetime import datetime, timedelta
from enum import Enum
import json
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import seaborn as sns
class SkillLevel(Enum):
BEGINNER = "beginner"
INTERMEDIATE = "intermediate"
ADVANCED = "advanced"
EXPERT = "expert"
class TrainingFormat(Enum):
INSTRUCTOR_LED = "instructor_led"
ONLINE_SELF_PACED = "online_self_paced"
BLENDED = "blended"
HANDS_ON_WORKSHOP = "hands_on_workshop"
MENTORING = "mentoring"
SIMULATION = "simulation"
class AssessmentType(Enum):
KNOWLEDGE_TEST = "knowledge_test"
PRACTICAL_DEMONSTRATION = "practical_demonstration"
SIMULATION_EXERCISE = "simulation_exercise"
CASE_STUDY = "case_study"
PEER_REVIEW = "peer_review"
PORTFOLIO_REVIEW = "portfolio_review"
class TrainingStatus(Enum):
NOT_STARTED = "not_started"
IN_PROGRESS = "in_progress"
COMPLETED = "completed"
FAILED = "failed"
CERTIFIED = "certified"
@dataclass
class EmployeeProfile:
"""Individual employee profile for training management"""
employee_id: str
name: str
role: str
department: str
experience_level: int # years
current_skills: Dict[str, SkillLevel]
learning_preferences: List[TrainingFormat]
availability: Dict[str, Any] # time slots, constraints
performance_history: List[Dict]
certification_status: Dict[str, bool]
learning_path: Optional[str] = None
mentor_assigned: Optional[str] = None
@dataclass
class SkillRequirement:
"""Skill requirement for a specific role"""
role: str
skill_category: str
required_level: SkillLevel
priority: int # 1-5, 1 being highest
assessment_method: AssessmentType
certification_required: bool = False
renewal_period_months: Optional[int] = None
@dataclass
class TrainingModule:
"""Individual training module"""
module_id: str
module_name: str
category: str
description: str
target_audience: List[str]
learning_objectives: List[str]
prerequisites: List[str]
duration_hours: float
format: TrainingFormat
difficulty_level: SkillLevel
max_participants: int
cost_per_participant: float
success_criteria: Dict[str, Any]
assessment_method: AssessmentType
certification_available: bool
renewal_required: bool = False
@dataclass
class TrainingSession:
"""Individual training session"""
session_id: str
module_id: str
trainer: str
start_date: datetime
end_date: datetime
participants: List[str]
format: TrainingFormat
location: Optional[str]
virtual_link: Optional[str]
capacity: int
status: str
materials: List[str]
assessments: List[Dict]
feedback: Optional[Dict] = None
@dataclass
class LearningPath:
"""Structured learning path for specific roles"""
path_id: str
path_name: str
target_role: str
description: str
modules: List[str] # module IDs in sequence
estimated_duration_weeks: int
competency_framework: Dict[str, SkillLevel]
assessment_checkpoints: List[str]
certification_requirements: List[str]
@dataclass
class TrainingOutcome:
"""Training outcome and results"""
employee_id: str
module_id: str
session_id: str
completion_date: datetime
score: Optional[float]
status: TrainingStatus
feedback_score: Optional[float]
skills_improved: List[str]
certification_earned: Optional[str]
practical_application_score: Optional[float]
peer_review_score: Optional[float]
class MEVTrainingManager:
"""Comprehensive MEV team training management system"""
def __init__(self, config: Dict):
self.config = config
self.logger = logging.getLogger(__name__)
# Training data
self.employees = {}
self.training_modules = {}
self.learning_paths = {}
self.training_sessions = {}
self.training_outcomes = {}
# Skills framework
self.skill_categories = {
'technical': [
'blockchain_fundamentals',
'smart_contracts',
'defi_protocols',
'web3_development',
'mev_extraction',
'risk_management',
'data_analysis'
],
'quantitative': [
'statistical_analysis',
'mathematical_modeling',
'backtesting',
'portfolio_optimization',
'algorithmic_trading',
'market_microstructure'
],
'operational': [
'trading_systems',
'execution_algorithms',
'order_management',
'position_tracking',
'compliance_procedures',
'incident_response'
],
'business': [
'market_analysis',
'strategy_development',
'project_management',
'communication',
'leadership',
'stakeholder_management'
]
}
# Competency requirements by role
self.role_competencies = self._define_role_competencies()
# Training delivery platforms
self.delivery_platforms = {
'lms': 'corporate_learning_management_system',
'virtual_classroom': 'zoom_teams',
'simulation_platform': 'custom_mev_simulator',
'hands_on_lab': 'cloud_based_trading_environment',
'knowledge_base': 'confluence_notion'
}
async def initialize_system(self):
"""Initialize the training management system"""
self.logger.info("Initializing MEV Training Management System...")
# Load existing employee data
await self._load_employee_data()
# Set up training modules
await self._initialize_training_modules()
# Create learning paths
await self._create_learning_paths()
# Set up assessment framework
await self._initialize_assessment_framework()
# Initialize reporting systems
await self._setup_reporting_systems()
self.logger.info("Training management system initialized")
async def assess_team_capabilities(self) -> Dict:
"""Comprehensive team capability assessment"""
assessment_results = {
'individual_assessments': {},
'team_overview': {},
'skill_gaps': [],
'training_recommendations': [],
'priority_areas': []
}
# Individual assessments
for employee_id, employee in self.employees.items():
individual_assessment = await self._assess_individual_capabilities(employee)
assessment_results['individual_assessments'][employee_id] = individual_assessment
# Team-level analysis
team_analysis = await self._analyze_team_capabilities()
assessment_results['team_overview'] = team_analysis
# Identify skill gaps
skill_gaps = await self._identify_skill_gaps()
assessment_results['skill_gaps'] = skill_gaps
# Generate training recommendations
recommendations = await self._generate_training_recommendations()
assessment_results['training_recommendations'] = recommendations
# Prioritize training areas
priority_areas = await self._prioritize_training_areas(skill_gaps, team_analysis)
assessment_results['priority_areas'] = priority_areas
return assessment_results
async def _assess_individual_capabilities(self, employee: EmployeeProfile) -> Dict:
"""Assess individual employee capabilities"""
# Get current skill levels
current_skills = employee.current_skills
# Determine required skills for role
role_requirements = self.role_competencies.get(employee.role, {})
# Calculate skill gaps
skill_gaps = {}
skill_strengths = {}
for skill_category, required_level in role_requirements.items():
current_level = current_skills.get(skill_category, SkillLevel.BEGINNER)
# Map skill levels to numeric values for comparison
level_values = {
SkillLevel.BEGINNER: 1,
SkillLevel.INTERMEDIATE: 2,
SkillLevel.ADVANCED: 3,
SkillLevel.EXPERT: 4
}
required_value = level_values[required_level]
current_value = level_values[current_level]
if current_value < required_value:
skill_gaps[skill_category] = {
'current_level': current_level.value,
'required_level': required_level.value,
'gap_severity': required_value - current_value,
'priority': self._calculate_skill_priority(employee.role, skill_category)
}
elif current_value > required_value:
skill_strengths[skill_category] = {
'current_level': current_level.value,
'expertise_level': current_value - required_value
}
# Calculate overall readiness score
total_required_skills = len(role_requirements)
skills_at_required_level = sum(1 for skill, req_level in role_requirements.items()
if current_skills.get(skill, SkillLevel.BEGINNER) >= req_level)
readiness_score = skills_at_required_level / max(total_required_skills, 1)
return {
'employee_id': employee.employee_id,
'role': employee.role,
'experience_years': employee.experience_level,
'current_skills': {k: v.value for k, v in current_skills.items()},
'skill_gaps': skill_gaps,
'skill_strengths': skill_strengths,
'readiness_score': readiness_score,
'learning_preferences': [pref.value for pref in employee.learning_preferences],
'recommended_training': await self._recommend_training_for_employee(employee, skill_gaps)
}
async def _analyze_team_capabilities(self) -> Dict:
"""Analyze team-level capabilities"""
team_skills = {category: [] for category in self.skill_categories.keys()}
skill_distributions = {}
team_readiness = []
for employee in self.employees.values():
role = employee.role
skills = employee.current_skills
# Aggregate skills by category
for skill_category, skill_level in skills.items():
if skill_category in team_skills:
team_skills[skill_category].append(skill_level.value)
# Calculate individual readiness score
role_requirements = self.role_competencies.get(role, {})
if role_requirements:
skills_at_required = sum(1 for skill, req_level in role_requirements.items()
if skills.get(skill, SkillLevel.BEGINNER) >= req_level)
readiness = skills_at_required / len(role_requirements)
team_readiness.append(readiness)
# Calculate skill distributions
for category, skill_levels in team_skills.items():
if skill_levels:
skill_distributions[category] = {
'mean_level': np.mean(skill_levels),
'median_level': np.median(skill_levels),
'std_deviation': np.std(skill_levels),
'distribution': {
'beginner': skill_levels.count('beginner'),
'intermediate': skill_levels.count('intermediate'),
'advanced': skill_levels.count('advanced'),
'expert': skill_levels.count('expert')
}
}
return {
'team_size': len(self.employees),
'average_readiness': np.mean(team_readiness) if team_readiness else 0,
'readiness_std': np.std(team_readiness) if team_readiness else 0,
'skill_distributions': skill_distributions,
'team_diversity': self._calculate_team_diversity(),
'experience_profile': self._calculate_experience_profile()
}
def _calculate_skill_priority(self, role: str, skill_category: str) -> int:
"""Calculate priority of skill for specific role"""
# Define skill priorities by role
skill_priorities = {
'mev_trader': {
'blockchain_fundamentals': 5,
'mev_extraction': 5,
'risk_management': 4,
'data_analysis': 4,
'execution_algorithms': 3
},
'quant_analyst': {
'statistical_analysis': 5,
'mathematical_modeling': 5,
'data_analysis': 4,
'backtesting': 4,
'portfolio_optimization': 3
},
'risk_manager': {
'risk_management': 5,
'statistical_analysis': 4,
'compliance_procedures': 4,
'market_analysis': 3,
'portfolio_optimization': 3
},
'system_engineer': {
'trading_systems': 5,
'smart_contracts': 4,
'web3_development': 4,
'order_management': 3,
'defi_protocols': 3
}
}
return skill_priorities.get(role, {}).get(skill_category, 3)
async def design_learning_path(self, role: str, target_skill_level: SkillLevel = SkillLevel.ADVANCED) -> LearningPath:
"""Design comprehensive learning path for specific role"""
# Get role requirements
role_requirements = self.role_competencies.get(role, {})
# Identify required modules
required_modules = []
current_skill_level = SkillLevel.BEGINNER
# Create sequenced learning path
for skill_category, required_level in role_requirements.items():
if required_level.value <= target_skill_level.value:
# Find appropriate training modules for this skill
skill_modules = await self._find_modules_for_skill(skill_category, current_skill_level, required_level)
required_modules.extend(skill_modules)
# Estimate duration
total_hours = sum(self.training_modules.get(mod_id, TrainingModule(
'', '', '', '', [], [], [], 1, TrainingFormat.INSTRUCTOR_LED, SkillLevel.BEGINNER, 1, 0, {}, AssessmentType.KNOWLEDGE_TEST, False
)).duration_hours for mod_id in required_modules)
estimated_weeks = max(1, int(total_hours / (20 / 7))) # Assuming 20 hours/week study time
# Define competency checkpoints
checkpoints = []
checkpoint_modules = required_modules[:len(required_modules)//3] # 3 checkpoints
for mod_id in checkpoint_modules:
checkpoints.append(f"checkpoint_{mod_id}")
learning_path = LearningPath(
path_id=f"{role}_{target_skill_level.value}",
path_name=f"{role.title()} - {target_skill_level.value.title()} Level",
target_role=role,
description=f"Comprehensive training path for {role} to achieve {target_skill_level.value} level competency",
modules=required_modules,
estimated_duration_weeks=estimated_weeks,
competency_framework=role_requirements,
assessment_checkpoints=checkpoints,
certification_requirements=[f"certification_{skill}" for skill in role_requirements.keys()]
)
return learning_path
async def implement_training_program(self, learning_path: LearningPath, cohort_size: int = 10) -> Dict:
"""Implement comprehensive training program"""
implementation_plan = {
'program_overview': {
'learning_path': learning_path.path_name,
'target_cohort_size': cohort_size,
'estimated_duration_weeks': learning_path.estimated_duration_weeks,
'total_participants': len(self.employees),
'required_resources': await self._calculate_resource_requirements(learning_path, cohort_size)
},
'cohort_planning': await self._plan_training_cohorts(learning_path, cohort_size),
'schedule_development': await self._develop_training_schedule(learning_path),
'assessment_strategy': await self._design_assessment_strategy(learning_path),
'support_structure': await self._create_support_structure(learning_path),
'success_metrics': await self._define_success_metrics(learning_path),
'budget_estimation': await self._estimate_training_budget(learning_path, cohort_size)
}
return implementation_plan
async def _plan_training_cohorts(self, learning_path: LearningPath, cohort_size: int) -> Dict:
"""Plan training cohorts based on employee availability and requirements"""
# Get employees eligible for this training path
eligible_employees = []
for employee in self.employees.values():
if employee.role == learning_path.target_role:
# Check if employee meets prerequisites
prerequisites_met = True
for prereq in learning_path.modules:
module = self.training_modules.get(prereq)
if module and module.prerequisites:
for prereq_skill in module.prerequisites:
if employee.current_skills.get(prereq_skill, SkillLevel.BEGINNER) < SkillLevel.INTERMEDIATE:
prerequisites_met = False
break
if not prerequisites_met:
break
if prerequisites_met:
eligible_employees.append(employee)
# Plan cohorts
cohorts = []
remaining_employees = eligible_employees.copy()
cohort_number = 1
while remaining_employees:
# Create cohort
cohort_employees = remaining_employees[:cohort_size]
remaining_employees = remaining_employees[cohort_size:]
# Consider availability and learning preferences
optimized_cohort = await self._optimize_cohort_composition(cohort_employees, learning_path)
cohort_plan = {
'cohort_id': f"cohort_{cohort_number}",
'participants': [emp.employee_id for emp in optimized_cohort],
'start_date': await self._schedule_cohort_start(cohort_number, learning_path),
'estimated_completion': None, # Will be calculated based on schedule
'training_formats': await self._recommend_cohort_formats(optimized_cohort),
'special_considerations': await self._identify_cohort_considerations(optimized_cohort)
}
cohorts.append(cohort_plan)
cohort_number += 1
return {
'total_cohorts': len(cohorts),
'cohorts': cohorts,
'scheduling_constraints': await self._analyze_scheduling_constraints(eligible_employees),
'resource_allocation': await self._plan_resource_allocation(cohorts)
}
async def _develop_performance_evaluation_system(self) -> Dict:
"""Develop comprehensive performance evaluation system"""
evaluation_system = {
'competency_framework': {
'technical_competencies': {
'blockchain_knowledge': {
'levels': ['basic', 'intermediate', 'advanced', 'expert'],
'assessment_methods': ['knowledge_test', 'practical_demo', 'peer_review'],
'weight': 0.25
},
'mev_extraction_skills': {
'levels': ['novice', 'competent', 'proficient', 'expert'],
'assessment_methods': ['simulation_exercise', 'case_study', 'portfolio_review'],
'weight': 0.30
},
'risk_management': {
'levels': ['beginner', 'intermediate', 'advanced', 'expert'],
'assessment_methods': ['knowledge_test', 'practical_demo', 'simulation'],
'weight': 0.20
}
},
'quantitative_competencies': {
'statistical_analysis': {
'levels': ['basic', 'intermediate', 'advanced', 'expert'],
'assessment_methods': ['knowledge_test', 'practical_demo', 'case_study'],
'weight': 0.15
},
'mathematical_modeling': {
'levels': ['novice', 'competent', 'proficient', 'expert'],
'assessment_methods': ['knowledge_test', 'practical_demo', 'portfolio_review'],
'weight': 0.10
}
}
},
'assessment_procedures': {
'initial_assessment': {
'purpose': 'baseline capability measurement',
'methods': ['comprehensive_skill_inventory', 'practical_assessment', 'knowledge_test'],
'time_requirement': '4 hours',
'frequency': 'once per employee'
},
'ongoing_assessment': {
'purpose': 'progress tracking and skill development',
'methods': ['module_assessments', 'project_based_assessment', 'peer_feedback'],
'time_requirement': '2 hours per month',
'frequency': 'monthly'
},
'certification_assessment': {
'purpose': 'competency certification for role advancement',
'methods': ['comprehensive_examination', 'practical_simulation', 'portfolio_defense'],
'time_requirement': '8 hours',
'frequency': 'quarterly'
}
},
'evaluation_criteria': {
'knowledge_mastery': {
'weight': 0.30,
'measures': ['test_scores', 'quiz_performance', 'reading_comprehension']
},
'practical_application': {
'weight': 0.40,
'measures': ['simulation_performance', 'hands_on_exercises', 'project_deliverables']
},
'professional_skills': {
'weight': 0.20,
'measures': ['communication', 'teamwork', 'problem_solving', 'leadership']
},
'continuous_improvement': {
'weight': 0.10,
'measures': ['self_assessment', 'learning_engagement', 'feedback_incorporation']
}
},
'certification_levels': {
'foundation': {
'description': 'Basic competency in MEV fundamentals',
'requirements': ['completion_of_core_modules', 'passing_score_70_percent'],
'validity_period': '2_years'
},
'practitioner': {
'description': 'Demonstrated practical MEV skills',
'requirements': ['foundation_certification', 'practical_assessment_pass', 'portfolio_review'],
'validity_period': '3_years'
},
'specialist': {
'description': 'Advanced expertise in specific MEV domain',
'requirements': ['practitioner_certification', 'specialization_module_completion', 'expert_assessment'],
'validity_period': '3_years'
},
'expert': {
'description': 'Thought leadership and mentoring capability',
'requirements': ['specialist_certification', 'knowledge_contribution', 'mentoring_experience'],
'validity_period': '5_years'
}
},
'feedback_mechanisms': {
'360_degree_feedback': {
'participants': ['manager', 'peers', 'subordinates', 'self'],
'frequency': 'semiannual',
'focus_areas': ['competency_application', 'professional_behavior', 'leadership_skills']
},
'continuous_feedback': {
'mechanism': 'real_time_feedback_platform',
'frequency': 'ongoing',
'categories': ['performance', 'development', 'recognition']
},
'assessment_feedback': {
'timing': 'within_48_hours_of_assessment',
'content': ['performance_summary', 'improvement_areas', 'development_recommendations'],
'format': ['written_report', 'one_on_one_discussion', 'development_plan']
}
}
}
return evaluation_system
async def create_knowledge_management_system(self) -> Dict:
"""Create comprehensive knowledge management system"""
knowledge_system = {
'knowledge_capture': {
'documentation_standards': {
'technical_documentation': {
'format': 'structured_markdown',
'required_sections': ['overview', 'technical_details', 'examples', 'troubleshooting'],
'review_process': 'peer_review_then_manager_approval',
'version_control': 'git_based',
'access_control': 'role_based'
},
'procedural_documentation': {
'format': 'step_by_step_instructions',
'required_sections': ['objective', 'prerequisites', 'steps', 'validation', 'rollback'],
'review_process': 'subject_matter_expert_review',
'update_frequency': 'quarterly_or_as_needed'
},
'lesson_learned_documentation': {
'format': 'incident_based_template',
'required_sections': ['situation', 'action_taken', 'outcome', 'lessons_learned', 'recommendations'],
'review_process': 'team_review_session',
'sharing_mechanism': 'knowledge_base_and_monthly_meetings'
}
},
'capture_mechanisms': {
'after_action_reviews': {
'trigger': 'significant_events_or_projects',
'participants': 'full_project_team',
'facilitator': 'trained_facilitator',
'output': 'comprehensive_lessons_learned_report'
},
'peer_to_peer_knowledge_sharing': {
'format': 'informal_knowledge_sessions',
'frequency': 'weekly_or_biweekly',
'platform': 'collaboration_tools',
'recording': 'video_and_transcript'
},
'expert_interviews': {
'frequency': 'monthly',
'participants': 'subject_matter_experts',
'format': 'structured_interview',
'output': 'expert_knowledge_base_entries'
}
}
},
'knowledge_organization': {
'taxonomy_structure': {
'primary_categories': [
'technical_knowledge',
'procedural_knowledge',
'market_knowledge',
'organizational_knowledge',
'regulatory_knowledge'
],
'secondary_categories': {
'technical_knowledge': [
'blockchain_technology',
'defi_protocols',
'mev_extraction',
'risk_management',
'system_architecture'
],
'procedural_knowledge': [
'trading_procedures',
'risk_procedures',
'compliance_procedures',
'incident_response',
'emergency_procedures'
]
}
},
'tagging_system': {
'mandatory_tags': ['content_type', 'expertise_level', 'last_updated', 'author'],
'optional_tags': ['related_protocols', 'risk_level', 'business_impact', 'urgency'],
'tag_governance': 'centralized_tag_management_with_user_suggestions'
},
'search_functionality': {
'search_engine': 'elasticsearch',
'search_capabilities': ['full_text', 'metadata', 'tag_based', 'semantic'],
'relevance_ranking': 'weighted_by_expertise_and_recency',
'search_analytics': 'track_search_patterns_and_improve_results'
}
},
'knowledge_sharing': {
'communities_of_practice': {
'mev_extraction_community': {
'members': 'mev_traders_and_analysts',
'meeting_frequency': 'weekly',
'activities': ['case_study_reviews', 'technique_sharing', 'strategy_discussions'],
'knowledge_sharing_platform': 'dedicated_slack_channel_and_monthly_meetings'
},
'risk_management_community': {
'members': 'risk_managers_and_analysts',
'meeting_frequency': 'biweekly',
'activities': ['risk_case_studies', 'regulatory_updates', 'methodology_sharing'],
'knowledge_sharing_platform': 'monthly_webinars_and_documentation_sharing'
}
},
'mentoring_program': {
'structure': 'formal_mentor_mentee_pairings',
'duration': '6_month_minimum_commitment',
'meeting_frequency': 'biweekly_formal_meetings_plus_as_needed',
'mentor_training': 'mentoring_skills_workshop',
'progress_tracking': 'regular_check_ins_and_feedback_sessions'
},
'learning_resources': {
'library_maintenance': 'curated_and_continuously_updated',
'resource_categorization': 'by_skill_level_and_topic',
'access_management': 'appropriate_permissions_for_different_levels',
'feedback_collection': 'user_ratings_and_comments_for_all_resources'
}
},
'knowledge_retention': {
'succession_planning': {
'critical_role_identification': 'roles_with_high_business_impact',
'knowledge_mapping': 'document_what_each_person_knows',
'cross_training': 'systematic_knowledge_transfer_between_employees',
'backup_personnel': 'identified_successors_for_all_critical_roles'
},
'retirement_preparation': {
'knowledge_transfer_timeline': '6_months_before_retirement',
'documentation_requirements': 'comprehensive_handover_documentation',
'shadow_period': '3_month_overlap_with_replacement',
'validation_process': 'knowledge_verification_through_assessments'
},
'turnover_management': {
'exit_interviews': 'structured_knowledge_capture_interviews',
'knowledge_capture_sessions': 'formal_sessions_with_team_members',
'documentation_deadlines': '30_day_completion_requirement',
'knowledge_continuity': 'immediate_transfer_to_designated_backup_personnel'
}
},
'technology_platform': {
'knowledge_base': {
'platform': 'enterprise_wiki_or_confluence',
'features': ['collaborative_editing', 'version_control', 'search', 'access_control'],
'integration': 'single_sign_on_and_ldap_integration',
'mobile_access': 'responsive_design_and_mobile_app'
},
'learning_management': {
'platform': 'corporate_lms',
'features': ['course_delivery', 'assessment_tracking', 'certification_management'],
'analytics': 'learning_analytics_and_progress_tracking',
'mobile_support': 'mobile_app_for_on_the_go_learning'
},
'collaboration_tools': {
'platform': 'slack_or_teams',
'features': ['channels', 'direct_messages', 'file_sharing', 'video_calls'],
'integrations': 'connect_with_knowledge_base_and_lms',
'notification_management': 'intelligent_notification_filtering'
}
}
}
return knowledge_system
# Helper methods
def _define_role_competencies(self) -> Dict[str, Dict[str, SkillLevel]]:
"""Define competency requirements for each role"""
return {
'mev_trader': {
'blockchain_fundamentals': SkillLevel.ADVANCED,
'mev_extraction': SkillLevel.EXPERT,
'risk_management': SkillLevel.ADVANCED,
'data_analysis': SkillLevel.INTERMEDIATE,
'execution_algorithms': SkillLevel.ADVANCED,
'market_microstructure': SkillLevel.INTERMEDIATE
},
'quant_analyst': {
'statistical_analysis': SkillLevel.EXPERT,
'mathematical_modeling': SkillLevel.EXPERT,
'data_analysis': SkillLevel.ADVANCED,
'backtesting': SkillLevel.ADVANCED,
'portfolio_optimization': SkillLevel.ADVANCED,
'blockchain_fundamentals': SkillLevel.INTERMEDIATE
},
'risk_manager': {
'risk_management': SkillLevel.EXPERT,
'statistical_analysis': SkillLevel.ADVANCED,
'compliance_procedures': SkillLevel.ADVANCED,
'market_analysis': SkillLevel.INTERMEDIATE,
'portfolio_optimization': SkillLevel.INTERMEDIATE,
'regulatory_knowledge': SkillLevel.ADVANCED
},
'system_engineer': {
'trading_systems': SkillLevel.EXPERT,
'smart_contracts': SkillLevel.ADVANCED,
'web3_development': SkillLevel.ADVANCED,
'order_management': SkillLevel.ADVANCED,
'defi_protocols': SkillLevel.INTERMEDIATE,
'blockchain_fundamentals': SkillLevel.INTERMEDIATE
}
}
async def _load_employee_data(self):
"""Load employee data (placeholder implementation)"""
# This would load from HR system or database
pass
async def _initialize_training_modules(self):
"""Initialize training modules (placeholder implementation)"""
# This would load from training database
pass
async def _create_learning_paths(self):
"""Create learning paths (placeholder implementation)"""
# This would create based on role requirements
pass
async def _initialize_assessment_framework(self):
"""Initialize assessment framework (placeholder implementation)"""
pass
async def _setup_reporting_systems(self):
"""Set up reporting systems (placeholder implementation)"""
pass
async def _find_modules_for_skill(self, skill_category: str, current_level: SkillLevel, target_level: SkillLevel) -> List[str]:
"""Find appropriate training modules for skill development"""
# Placeholder implementation
return [f"module_{skill_category}_{target_level.value}"]
def _calculate_team_diversity(self) -> Dict:
"""Calculate team diversity metrics"""
return {
'skill_diversity_index': 0.8, # Placeholder
'experience_diversity': 'well_distributed',
'learning_style_diversity': 'balanced'
}
def _calculate_experience_profile(self) -> Dict:
"""Calculate team experience profile"""
experiences = [emp.experience_level for emp in self.employees.values()]
return {
'mean_experience': np.mean(experiences),
'experience_range': f"{min(experiences)}-{max(experiences)} years",
'senior_staff_ratio': len([e for e in experiences if e >= 5]) / len(experiences)
}
async def _recommend_training_for_employee(self, employee: EmployeeProfile, skill_gaps: Dict) -> List[str]:
"""Recommend training modules for specific employee"""
# Placeholder implementation
return [f"training_{gap}" for gap in skill_gaps.keys()]
async def _identify_skill_gaps(self) -> List[Dict]:
"""Identify organization-wide skill gaps"""
# Placeholder implementation
return []
async def _generate_training_recommendations(self) -> List[Dict]:
"""Generate training recommendations"""
# Placeholder implementation
return []
async def _prioritize_training_areas(self, skill_gaps: List, team_analysis: Dict) -> List[Dict]:
"""Prioritize training areas based on business impact"""
# Placeholder implementation
return []
async def _calculate_resource_requirements(self, learning_path: LearningPath, cohort_size: int) -> Dict:
"""Calculate resource requirements for training program"""
# Placeholder implementation
return {}
async def _schedule_cohort_start(self, cohort_number: int, learning_path: LearningPath) -> datetime:
"""Schedule cohort start date"""
# Placeholder implementation
return datetime.now() + timedelta(weeks=cohort_number * 4)
async def _optimize_cohort_composition(self, employees: List[EmployeeProfile], learning_path: LearningPath) -> List[EmployeeProfile]:
"""Optimize cohort composition"""
# Placeholder implementation
return employees[:min(len(employees), 10)]
async def _recommend_cohort_formats(self, employees: List[EmployeeProfile]) -> List[TrainingFormat]:
"""Recommend training formats for cohort"""
# Analyze employee preferences
preferences = {}
for emp in employees:
for pref in emp.learning_preferences:
preferences[pref] = preferences.get(pref, 0) + 1
# Return most preferred formats
sorted_prefs = sorted(preferences.items(), key=lambda x: x[1], reverse=True)
return [pref[0] for pref in sorted_prefs[:3]]
async def _identify_cohort_considerations(self, employees: List[EmployeeProfile]) -> List[str]:
"""Identify special considerations for cohort"""
considerations = []
# Check for similar experience levels
experiences = [emp.experience_level for emp in employees]
if max(experiences) - min(experiences) > 5:
considerations.append("High experience diversity - consider mixed-level approach")
# Check for learning preferences
preference_diversity = len(set(emp.learning_preferences for emp in employees))
if preference_diversity > 3:
considerations.append("Diverse learning preferences - use blended approach")
return considerations
async def _analyze_scheduling_constraints(self, employees: List[EmployeeProfile]) -> Dict:
"""Analyze scheduling constraints"""
# Placeholder implementation
return {'constraints': 'minimal'}
async def _plan_resource_allocation(self, cohorts: List[Dict]) -> Dict:
"""Plan resource allocation across cohorts"""
# Placeholder implementation
return {'resources': 'adequately_planned'}
async def _estimate_training_budget(self, learning_path: LearningPath, cohort_size: int) -> Dict:
"""Estimate training budget"""
# Placeholder implementation
return {
'total_estimated_cost': 50000,
'cost_breakdown': {
'instructor_costs': 20000,
'platform_costs': 5000,
'material_costs': 10000,
'participant_time': 15000
}
}
# Example usage
async def main():
# Initialize training manager
config = {
'organization_size': 50,
'training_budget': 500000,
'certification_requirements': ['sox', 'gdpr'],
'learning_preferences': ['blended', 'hands_on', 'peer_learning']
}
manager = MEVTrainingManager(config)
await manager.initialize_system()
# Assess team capabilities
assessment = await manager.assess_team_capabilities()
print(f"Team readiness score: {assessment['team_overview']['average_readiness']:.2%}")
print(f"Priority training areas: {len(assessment['priority_areas'])}")
# Design learning path
learning_path = await manager.design_learning_path('mev_trader', SkillLevel.ADVANCED)
print(f"Learning path created: {learning_path.path_name}")
print(f"Duration: {learning_path.estimated_duration_weeks} weeks")
# Implement training program
implementation = await manager.implement_training_program(learning_path)
print(f"Training program planned: {implementation['program_overview']['total_cohorts']} cohorts")
# Develop performance evaluation system
evaluation_system = await manager._develop_performance_evaluation_system()
print(f"Performance evaluation system ready")
print(f"Certification levels: {len(evaluation_system['certification_levels'])}")
# Create knowledge management system
knowledge_system = await manager.create_knowledge_management_system()
print(f"Knowledge management system created")
print(f"Communities of practice: {len(knowledge_system['knowledge_sharing']['communities_of_practice'])}")
if __name__ == "__main__":
asyncio.run(main())