Enthusiast Path

Risk Management Principles

Master essential risk management techniques to protect your capital and minimize losses in MEV trading

Duration: 6 hours
Level: Beginner-Intermediate
Price: Free
Certificate: Available

Course Progress

0%

Protect your trading capital

Start Course

Learning Objectives

By the end of this course, you will be able to:

  • Implement proper position sizing for MEV strategies
  • Calculate and manage portfolio risk metrics
  • Set up stop-loss and take-profit mechanisms
  • Diversify across different MEV strategy types
  • Monitor and control drawdown levels
  • Build robust risk management systems

Course Modules

1

Position Sizing Fundamentals

Determining optimal trade sizes based on risk tolerance

60 min
Start
2

Portfolio Risk Metrics

Measuring and monitoring portfolio performance

75 min
Start
3

Stop-Loss & Take-Profit Systems

Implementing automated exit strategies

50 min
Start
4

Strategy Diversification

Spreading risk across multiple MEV strategies

65 min
Start
5

Drawdown Control

Managing and recovering from losses

70 min
Start
6

Risk Management Systems

Building automated risk monitoring tools

80 min
Start

Interactive Risk Calculator

Position Size Calculator

Calculate optimal position sizes using the Kelly Criterion and risk management principles

Position Size
$200.00
Kelly Percentage
2.00%
Max Loss
$200.00

Portfolio Risk Monitor

Real-time monitoring of your portfolio risk metrics

Total Portfolio Value
Current portfolio worth
$10,847.32
Current Drawdown
Peak to trough decline
-3.2%
Daily VaR (95%)
Value at Risk estimate
$432.19
Sharpe Ratio
Risk-adjusted returns
2.45
Max Daily Loss
Worst case scenario
-$1,234.56

Risk Management Code Examples

Portfolio Risk Manager (Python)

import numpy as np
import pandas as pd
from typing import Dict, List, Tuple

class PortfolioRiskManager:
    def __init__(self, initial_balance: float, max_drawdown: float = 0.15):
        self.initial_balance = initial_balance
        self.current_balance = initial_balance
        self.peak_balance = initial_balance
        self.max_drawdown = max_drawdown
        self.positions = {}
        self.trade_history = []
        self.daily_pnl = []
    
    def calculate_position_size(self, 
                              account_balance: float,
                              risk_percentage: float,
                              win_rate: float,
                              win_loss_ratio: float) -> float:
        """Calculate position size using Kelly Criterion"""
        if win_rate <= 0 or win_loss_ratio <= 0:
            return 0
        
        # Kelly Criterion formula
        kelly_percentage = (win_rate * win_loss_ratio - (1 - win_rate)) / win_loss_ratio
        kelly_percentage = max(0, min(kelly_percentage, 0.25))  # Cap at 25%
        
        # Apply risk management multiplier (typically 0.25 of Kelly)
        position_risk = kelly_percentage * 0.25 * risk_percentage / 100
        
        return account_balance * position_risk
    
    def check_risk_limits(self, proposed_position_size: float) -> Tuple[bool, str]:
        """Check if proposed position meets risk criteria"""
        max_position = self.current_balance * 0.1  # Max 10% per position
        max_portfolio_risk = self.current_balance * 0.02  # Max 2% total risk
        
        if proposed_position_size > max_position:
            return False, f"Position size exceeds 10% of portfolio (${max_position:,.2f})"
        
        if self.get_total_exposure() + proposed_position_size > max_portfolio_risk:
            return False, "Total portfolio risk would exceed 2%"
        
        return True, "Position approved"
    
    def update_drawdown(self, new_balance: float):
        """Update current drawdown metrics"""
        self.current_balance = new_balance
        self.peak_balance = max(self.peak_balance, new_balance)
        current_drawdown = (self.peak_balance - new_balance) / self.peak_balance
        
        if current_drawdown > self.max_drawdown:
            raise ValueError(f"Maximum drawdown exceeded: {current_drawdown:.2%}")
        
        return current_drawdown
    
    def get_risk_metrics(self) -> Dict:
        """Calculate comprehensive risk metrics"""
        total_exposure = self.get_total_exposure()
        current_drawdown = (self.peak_balance - self.current_balance) / self.peak_balance
        
        # Calculate Sharpe ratio (simplified)
        if len(self.daily_pnl) > 1:
            returns = np.array(self.daily_pnl)
            sharpe_ratio = np.mean(returns) / np.std(returns) * np.sqrt(365) if np.std(returns) > 0 else 0
        else:
            sharpe_ratio = 0
        
        # Value at Risk (95% confidence)
        var_95 = np.percentile(self.daily_pnl, 5) if self.daily_pnl else 0
        
        return {
            'total_exposure': total_exposure,
            'current_drawdown': current_drawdown,
            'portfolio_utilization': total_exposure / self.current_balance,
            'sharpe_ratio': sharpe_ratio,
            'var_95': var_95,
            'max_drawdown_limit': self.max_drawdown
        }
    
    def get_total_exposure(self) -> float:
        """Calculate total portfolio exposure"""
        return sum(abs(position.get('value', 0)) for position in self.positions.values())

# Usage Example
risk_manager = PortfolioRiskManager(initial_balance=10000, max_drawdown=0.15)

# Calculate optimal position size
position_size = risk_manager.calculate_position_size(
    account_balance=10000,
    risk_percentage=2,
    win_rate=0.7,
    win_loss_ratio=1.5
)

# Check risk limits
approved, message = risk_manager.check_risk_limits(position_size)
print(f"Position size: ${position_size:,.2f}")
print(f"Risk check: {message}")

# Get current risk metrics
metrics = risk_manager.get_risk_metrics()
print(f"Current drawdown: {metrics['current_drawdown']:.2%}")
print(f"Sharpe ratio: {metrics['sharpe_ratio']:.2f}")
print(f"VaR (95%): ${metrics['var_95']:,.2f}")